Search or add a thesis

Advanced Search (Beta)
Home > Workplace incivility and employee outcome The mediating role of emotional labor

Workplace incivility and employee outcome The mediating role of emotional labor

Thesis Info

Author

Rafia Yasmin

Supervisor

Fauzia Syed

Department

Department of Management Sciences

Program

MS

Institute

International Islamic University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2018

Thesis Completion Status

Completed

Page

114

Subject

Management

Language

English

Other

MS 658.4092 RAW

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676721509079

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

ڈینگی مکائو مہم میں معاشرے کا کردار

ڈینگی مکاؤ مہم میں معاشرے کا کردار
ڈینگی بخار ہے جو چند ماہ سے پاکستان کے عوام کے لیے خوف کی علامت بنا ہوا ہے۔ یہ بخار 1775 میں افریقہ، شمالی امریکہ اور ایشیاء میں پراسرار طور پر نمودار ہوا، اس بخار کا سبب مادہ مچھر ہوتی ہے جو کاٹتی ہے تو بخار ہو جاتاہے۔ اس بخار کے پیراسائیٹس کو پلازموڈیم کہتے ہیں۔ یہ مادہ مچھر ایک اعلیٰ ترین نسل سے منسوب کی جاتی ہے جو گندے پانی وغیرہ کو پسندنہیں کرتی بلکہ خوشنما سرسبز پھولوں ، پھلوں والے پودوں اور درختوں پرڈیرہ جماتی ہے۔
ڈینگی بخار ایک مرض ہے، جس طرح دیگر امراض سے انسان کو واسطہ پڑتا ہے اسی طرح یہ مرض بھی اپنے خونخوار پنجوں میں جکڑنے کی بھر پور کوشش کرتا ہے۔ لیکن کوئی مرض ایسا نہیں ہے کہ جس کا علاج موجود نہ ہو۔ حدیث نبوی صلی اللہ علیہ و آلہٖ وسلمہے کہ کوئی مرض ایسانہیں ہے جس کا علاج نہ ہو، یعنی تمام مرض علاج سے ختم ہوجاتے ہیں۔ جب ایک ذی شعور انسان اس قسم کے حوالہ جات اپنے دماغ کے آنگن میں رکھتا ہے تو وہ ان عوارضات سے کبھی متاثر نہیں ہوتا وہ علاج کرتا ہے اور مسلمان ہونے کے ناطے بالخصوص اور انسان ہونے کے ناطے بالعموم شفاء من جانب اللہ کا تصور چاہتا ہے۔ اپنے اس اعتقاد کی بدولت کہ موت کا ایک دن مقرر ہے وہ اس بخار کے خوف کو اپنے نہاںخانۂ دل میں کوئی جگہ نہیں دیتا۔ اس بخار کے خاتمے میں اس قسم کے اعتقادات اور تصورات بڑی اہمیت کے حامل گردانے جاتے ہیں۔ اور یوں نفسیاتی طور پر اس سے متاثر مریض صحت یاب ہونا شروع ہو جا تا ہے۔
ڈینگی بخار کے خاتمے کے لیے معاشرتی طور پر ایک اہم رول ادا کرنے کی ضرورت ہے۔ واعظ ممبر رسول صلی...

Al-Ūdwī’s Theory of Iʿjāz Al-Qurʾān

Maulānā Muḥammad Ismāʿīl al-Ūdwī al-Shikārpurī (1897-1970) was one of the very prominent scholarly personalities of Pakistan. His life and works are studied and analyzed in detail elsewhere. (See. IRJAH, Faculty of Arts, University of Sindh, Jamshoro, Vol. 42, 2014 and Ma’arif Research Journal, Islamic Research Academy, Karachi, issue. 13, 2017). This paper mainly deals with al-Ūdwī’s theory of iʿjāz al-Qurʾān. With regard to the theory of iʿjāz al-Qurʾān, classical scholars including al-Rummani, al-Khaṭṭābī, al-Baqillani, al-Rāzī significantly emphasize the linguistic nature of iʿjāz as an argument to support the doctrine of iʿjāz al-Qurʾān. Al-Ūdwī on the other hand, after accepting the linguistic iʿjāz of the Qurʾān, proceeds to go further than his predecessors in supporting the doctrine of iʿjāz al-Qurʾān by emphasizing and situating iʿjāz in the content of the Qurʾān. Therefore, his book Nūr al-Īqān bi iʿjāz al-Qurʾān seems to be considerably different in its arguments from his predecessors’ theory. There is no exaggeration to say that al-Ūdwī has distinctly added several new arguments in his book, which, according to him, provide the certainty in the doctrine of iʿjāz, as he names his book as Nūr al-Īqān bi Iʿjāz al-Qurʾān, ‘Light of the faith through the inimitability of the Qurʾān.

Formulating Offline Nondestructive Validation of Solid Drug Surface Morphology Using Microscopic Multispectral High Resolution Imaging

The non-destructive analysis of a Solid Pharmaceutical Product (SPP) is essential to verify the quality without destroying the product. This analysis may be performed using various image processing and signal processing techniques on images and multispectral data. Based on this analysis, an SPP may be classified as defective or non-defective. The SPP (categorized as defective) are exposed to three different environmental factors (humidity, temperature and moisture) over different time periods and the variations in data are analyzed to judge the effects of these factors on classification of an SPP. In this research, we have proposed two non-destructive methods to identify defective and non-defective SPPs using their surface morphology. In first approach, multiple textural features are extracted using microscopic images of the surface of the defective and non-defective SPPs. These textural features are Gray Level Co-occurrence Matrix, Run Length Matrix, Histogram, Auto Regressive Model and HAAR Wavelet. Total textural features extracted from microscopic images are 281. The features are reduced using three feature reduction techniques; Chi-square, Gain Ratio and Relief-F. We have formulated three feature sets, through experimentation, with 281, 15 and 2 features. We have used four classifiers namely Support Vector Machine, K-Nearest Neighbors, Naïve Bayes and Ensemble of Classifiers, to calculate the accuracy of proposed approach. The classifiers are implemented using leave-one-out cross validation and holdout validation methods. We tested each classifier against all feature sets and the results were compared. The results showed that in most of the cases, Support Vector Machine performed better than the other classifiers. In second approach, we have used multispectral data and applied wavelet transformations in conjunction with various machine learning techniques for the classification. The results showed that the spectrum extracted from Ultra Violet x wavelength range is more suitable for the classification between defective and non-defective SPPs. Furthermore, results also described that K-Nearest Neighbors classifier or Ensemble of Classifiers is a more appropriate classifier. In the last, the hybrid of the both approaches was tested. The analysis of the results showed that the hybrid approach is better than the individual ones. An accuracy of 94% is achieved using K-Nearest Neighbors when a combined dataset of SPPs affected by all of the three environmental factors is used.