کامیابی
کر نال ملاّح دے پیار کُڑے
جے توں لنگھنا چاہویں پار کُڑے
دن چڑھیا تے شام ہو جانی اے
ڈھل جانی اے یار جوانی اے
تیری ڈولی جنگل جانی اے
جتھے دُکھ ہزار کُڑے
کر نال ملاّح دے پیار کُڑے
اوہ پینڈا دور دراز دا اے
اوتھے پہلا پچھ نماز دا اے
اوہ جانوں راز نیاز دا اے
کر عمل تے کھٹ بہار کُڑے
کر نال ملاّح دے پیار کُڑے
تدھ چوڑا چھن چھن چھنکے نی
گل پا حضوری منکے نی
رنگ دار تے ونکو ونکے نی
توں ہس کے وقت گزار کُڑے
کر نال ملاّح دے پیار کُڑے
تیرے وال سنہری بھاندے نیں
جو ویکھن خوشیاں پاندے نیں
ایہہ ہسن چار دناں دے نیں
نہیں لگنا فیر بزار کڑے
کر نال ملاّح دے پیار کُڑے
تینوں سائیں سنہڑے گھلے نی
توں خرچہ بنھ لے پلے نی
جاندی نوں کہڑا ٹھلے نی
توں کیتا سی اقرار کُڑے
کر نال ملاّح دے پیار کُڑے
قادریؔ دی گل پلے پاویں
اکھیں کسے دے نال نہ لاویں
سچے در تے سیس نواویں
تینوں ملسی چین قرار کُڑے
کر نال ملاّح دے پیار کُڑے
Juristic rules laid the foundation of law, along with such juristic rules, Islām promotes the values of piety (through mystic guidelines). Most of the theologians opine that the real approach to get close the Creator can only be achieved through the mystic guidelines. In the early period of Islām, during the time of the prophet, , caliphate guided rightly the of periods the during and (صلى الله عليه وسلم) Muhammad when people were trained in a very righteous environment, there were no such reservations about the applications of clear jurisprudential injunctions along with the mystic guidelines, but, when Muslims tasted the grandeur of rule, regime and abundance of wealth, they indulged in the worldly affairs and adopted a materialistic approach, not only in their daily life, but, toward their religion, too. The Muslim thinkers have been trying to define and explain whether the typical rituals of mysticism are reconcilable with the larger demands of an Islamic vocabulary. Despite the wide diversity of the critical approaches, a certain pattern has been identified by Muslim responses as mysticism, which is, sometimes found closer to asceticism and sometime as a mediator. Many Muslim mystics have dealt with mysticism, but, perhaps, Manāẓir Aḥsan Gīlānī has displayed, with reference to Ibn ‘Arabī and Shāh Walī Ullāh, the most impressive and knowledgeable applications of such mystic ideas within an Islamic framework. Manāẓir’s applied mysticism is not a typical mysticism; his special focus upon legal injunctions of al-Sharī‘ah goes much further than any of his peers in establishing a strong framework for better understanding of Islām. This study is devoted to examining the effects and implications of mysticism, not only for individuals, but also for the Muslim masses, generally.
Beta Exponentiated Weibull distribution (BEWD) is an extension of the exponentiated Weibull distribution which involves two additional shape parameters. Interestingly, the additional parameters control the tails weights of the distribution and affect skewness and kurtosis of the distribution. The five-parameter BEWD is a generalized distribution in modelling lifetimes of various industrial products. Its density and hazard curves are widely heterogeneous in their shapes. Three subfamilies of the BEWD family emerge under three parameter subspaces with the property that the members of each subfamily display similar density curves. It is found that some members of the BEWD family in one of the parameter subspaces approximately behave like a normal distribution. BEWD assumes decreasing, increasing or a bathtub behaviour. Using a sample hazard curve, and so a prior understanding of restrictions on the BEWD parameters we find estimates of parameters for fitting BEWD. These estimates based on maximum likelihood are essentially more efficient than when no such knowledge about the sample hazard curve is used. Characterizations based on truncated moments and hazard rate function are obtained. Simulation study of BEWD is performed in both ways; without the knowledge of parametric conditions and using parametric constraints and compare the results. Real data applications of the proposed approach support the better fitting of BEWD than other models. A generalization of BEWD is introduced in which a transmuted parameter is added and its behaviour is studied, named as Transmuted Beta Exponentiated Weibull Distribution (TBEWD). Different mathematical properties including moments, characteristic function, skewness, kurtosis and mode are being discussed. The transmuted parameter affects the basic characteristics, shape of density function and other properties of BEWD. Characterizations of TBEWD based on truncated moments and hazard rate function are also derived. The maximum likelihood estimation (MLE) is used to estimate the model parameters. Simulation Study is performed to test the efficiency of MLEs. Various aspects of this distribution are explored in the context of its applications, which include its subfamilies displaying reasonable similarity with regard to their hazard curves. The parametric restrictions so discovered are found useful in fitting this distribution. A number of applications of TBEWD model are also given.