Search or add a thesis

Advanced Search (Beta)
Home > Jammu and Kashmir uprising after Burhan Wani's death

Jammu and Kashmir uprising after Burhan Wani's death

Thesis Info

Author

Sania Saeed Zafar

Supervisor

Nasreen Akhtar

Department

Department of Political Science and International Relations

Program

BS

Institute

International Islamic University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2017

Thesis Completion Status

Completed

Page

40

Subject

Politics and International Relations

Language

English

Other

BS 320.954604 SAJ

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676721847525

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

میجر علی حماد عباسی

پرنس انجم قدر ؍ میجر علی حماد عباسی
آل انڈیا شیعہ کانفرنس کے صدر پرنس انجم قدر کی وفات ملک و ملت کا بڑا حادثہ ہے، سنیوں سے بھی ان کے روابط تھے، وہ دونوں فرقوں میں اتحاد و مفاہمت کے بڑے حامی تھے اور مشترکہ ملی مسائل کے حل کے لیے سنیوں کے ساتھ ہر جدوجہد میں شریک رہتے تھے۔ مسلم پرنسپل لابورڈ، مسلم مجلس مشاورت اور بابری مسجد تحریک سے ان کا گہرا تعلق تھا، دوسرا حادثہ میجر علی حماد عباسی کی اچانک وفات ہے۔ وہ شبلی کالج میں انگریزی کے استاد اور آخر میں پرنسپل ہوئے، پڑھنے لکھنے کا اچھا ذوق تھا اور مشرقی و مغربی ادب پر خاصی نظر تھی۔ وقتاً فوقتاً طنزیہ و مزاحیہ اور ادبی و تنقیدی مضامین لکھتے تھے جن کے بعض مجموعے چھپ گئے ہیں، طالب علمی کے زمانے ہی سے دارالمصنفین برابر آتے تھے جس کا سلسلہ آخر تک قائم رہا۔ پروفیسر مجیب الحسن کی کتاب کشمیر انڈر سلطانز کا اردو ترجمہ ’’کشمیر سلاطین کے عہد میں‘‘ کے نام سے کیا جو دارالمصنفین سے شائع ہوا۔
(ضیاء الدین اصلاحی، ستمبر ۱۹۹۷ء)

 

The World viz-a-viz Covid-19 Pandemic  Which Way Is A Way to Temple?

The contemporary world is witnessing a deadly pandemic whose outcome till date has played havoc on the world economies and has rendered businesses, industries, and societies to a grinding halt. There exists even a greater danger that devastation of economies may eventually lead to conflicts within and outside the periphery of borders. The world will continue till its very end and humans will have to live with wars, pandemics, and natural calamities. Two ‘social’ institutions so far have remained the most fundamental for a rather unbumpy time-evolution of any society, viz. (i) Institutions producing ‘manpower’ (i.e, educational institutions); and (ii) Workplaces run by ‘manpower’ (such as businesses, trade, industries, and military).

An Ocr System for Printed Nastaliq Script: A Segmentation Based Approach

Machine simulation of human reading has been a subject of intensive research for almost four decades. The latest improvements in recognition methods and systems for Latin script are very promising and matured product are available for those languages in the market. On the contrary, despite more than one decade of research in the field of Urdu Optical Character Recognition (OCR), the reading skill of the computer is still way behind that of human. Automatic Urdu character recognition is a challenging task due to less attention of researchers and intrinsic complexity of Urdu text. That is highly cursive and calligraphic nature, diagonality in writing, and vertical overlap between characters in a sub-word. In this research, we present a novel implicit segmentation based technique for development of an OCR for printed Nasta''liq text lines. This work introduces a novel and robust approach based on statistical models that provide solution for recognition of Nasta’liq style Urdu text. Unlike to classical approaches which segment text into words, ligatures or characters, we employ an implicit segmentation where text lines are recognized during segmentation. The developed system is evaluated on standard Urdu text databases and compared with the state-of-the-art recognition techniques proposed till date. In the proposed recognition system, we use two strategies, first is based on manual features and second on automatic features. In the first strategy, we split each text line image into small frames of width ‘n’ by using a sliding window and extract many features from each frame. These features are then concatenated to form a feature vector for the text line. In the second strategy, we extract features automatically by using the Multi-dimensional (MD) Long Short Term Memory (LSTM) model in one scenario and by Convolutional Neural Network (CNN) model in other scenario. Features extracted from the text lines along with their respective transcriptions are fed to a Recurrent Neural Network (RNN) for training or classification. Recognition is obtained by using MDLSTM based recognizers with the Connectionist Temporal Classification (CTC) output layer. The experiments conducted on a standard UPTI database yield promising results. We obtained 96.40% (3.6% error rate) recognition rates using manual features, 98% (2.0% error rate) using raw pixels based features and 98.12% (1.88% error rate) using CNN based features.