پروفیسر فضل الرحمن فریدی مرحوم
۲۶؍ جولائی کے اخبار میں ڈاکٹر شرف الدین اصلاحی کے انتقال کی خبر کے ساتھ ڈاکٹر فضل الرحمن فریدی کی وفات کی بھی خبر تھی، غم دوگنا ہوگیا، دنیائے علم کی ویرانی سی ویرانی ہے، اس کیفیت خزاں میں شجر زندگی کے اوراق زرد ہوتے جاتے ہیں۔
ڈاکٹر صاحب شیراز ہند جونپور کے مردم خیز قصبہ مچھلی شہر میں پیدا ہوئے، الہ آباد اور علی گڑھ میں اعلیٰ تعلیم حاصل کی، معاشیات کے موضوع میں اختصاص کیا، پہلے مسلم یونیورسٹی اور بعد میں سعودی عرب کی ملک عبدالعزیز یونیورسٹی میں اسی کادرس دیا، اﷲ نے قلب و ذہن کو پاکیزگی بخشی، اسلام کے نظریۂ معاشیات کو عصری نظام سرمایہ داری اور قمار و سود کی گرم بازاری میں یقین و اعتماد کے ساتھ پیش کرکے اس کی بہتری اور برتری ثابت کرنا، اس دور کا فرض کفایہ تھا جس کو پورا کرنے والوں میں فریدی مرحوم کا حصہ بڑا نمایاں ہے۔
تدریس کے ساتھ انہوں نے تصنیف و تالیف کا عمل جاری رکھا، جماعت اسلامی سے متاثر تھے اسی لیے جماعت کے انگریزی ترجمان ’’ریڈینس‘‘ کی ادارت اور دوسری انتظامی ذمہ داریاں بھی وقتاً فوقتاً انجام دیتے رہے، لیکن رسالہ ’’زندگی نو‘‘ ان کے افکار و نظریات کا سب سے موثر ترجمان رہا، وہ اس کے مدیر تھے اور اشارات میں ان کی ادارتی تحریریں اشارات سے زیادہ بینات کی صورت سامنے آتی رہیں۔ خصوصاً معاشی موضوعات پر نہایت معلومات افزا ہوتیں، ان کے افکار کی تہہ میں صرف یہ جذبہ پنہاں ہوتا کہ اسلام کی معاشی تعلیمات کی برکتوں کا اندازہ کرنے کے لیے موجودہ زمانہ کا ماحول سب سے سازگار ہے لیکن ہماری معلومات صرف روایتی مذہبی تعلیمات تک محدود ہیں، آئی ایم ایف جیسے مالیاتی اداروں کو ان کے اسلوب میں بتانے کی ضرورت ہے کہ قرضوں کی...
Since the creation of this world, there have been disagreements in different matters among mankind. Technically, difference in opinion is of two kinds. One is Invalid or unpleasant disagreement; which has no valid reasoning and it bases on other evil objectives. While the other one is valid or pleasant disagreement; which bases on valid reasoning. The second one is also known as healthy disagreement. The disagreements among Islamic Scholars, ‘Ulamā and fuqahā relates to the second kind; valid disagreements, because they are established on valid reasons and evidences. They are also considered as a blessing for mankind. That is why these scholarly and fiqhī disagreements are always deeply admired. An important book scholarly written on the subject matter is ‘Kitāb al Tajrīd’ by Imām Qudūrī. This article is an introduction to his book ‘Kitāb al Tajrīd’ and its style. It is a distinct and excellent book of its kind. The features of the book motivate to discuss about it.
“Behind every theorem lies an inequality”. Mathematical inequalities play an impor- tant role in almost all branches of mathematics as well as in other areas of science. The basic work ”Inequalities” by Hardy, Littlewood and Polya appeared 1934 [37]and the books ”Inequalities” by Beckenbach and Bellman published in 1961 [9] and ”An- alytic inequalities” by Mitronovic published in 1970 made considerable contribution to this field and supplied motivation, ideas, techniques and applications. This theory in recent years has attached the attention of large number of researchers, stimulated new research directions and influenced various aspect of mathematical analysis and applications. Since 1934 an enormous amount of effort has been devoted to the dis- covery of new types of inequalities and the application of inequalities in many part of analysis. The usefulness of Mathematical inequalities is felt from the very be- ginning and is now widely acknowledged as one of the major deriving forces behind the development of modern real analysis. This dissertation deals with the inequali- ties for Jensen inqualites involving average of convex functions, Hermite-Hadamard inequalities. Chapter 1 offers an overview of the basic results contains a survey of basic concepts, indications and results from theory of convex functions and theory of inequalities used in subsequent chapters to which we refer as the known facts. Chapter 2 we give proofs of convexity and Schur convexity of the generalized inte- gral and weighted integral quasi-arithmetic mean. An overview of assorted proofs of schur convexity of integral arithmetic mean is discussed. In a detailed proof, discrete Jensen inequality for integral arithmetic mean is derived. Also integral version of Jensen inequality for integral arithmetic mean is proved. Motivated by discrete and viiviii integral Jensen inequalities functionals are defined. Two different method is given for constructing new examples of exponentially convex functions from non trivial gen- erating families of functions. Mean value theorem are proved. Different classes of monotonically increasing Cauchy means are created. Chapter 3 gives us convexity and Schur convexity of functions connected to Hermite- Hadamrd inequality as well as Schur convexity of differences of Hermite-Hadamrd inequality and Hammar-Bullen inequality by different proofs. Applying assorted gen- eralizations of Hermite-Hadamard inequality and Hammer-Bullen inequality on some special families of functions from varied classes, n-exponentially convex functions are generated by quite new method. Lyponuve, Dresher and Gramm’s type inequalities are developed. Pretty different Stolarsky type means are derives preserving inherited monotonically increasing property. Chapter 4 deals with inequalities of higher order convexity and divided difference. Two of them use majorization results and others are related to Jensen inequalities and Hermite-Hadamrd inequality. Integral Jensen inequality for divided difference is proved. Applications of averages of 3-convex functions as first order divided difference of convex functions are acquired. Method of producing n-exponentially convex func- tions is applied using divided differences. Produced functions are used in studying Stolarsky type means In the fifth chapter results about averages values of convex func- tions with variable limits and average values of composition functions is given. Study functionals for inequalities proved by D.E. Wulbert ( call them Wulbert’s inequalities for convenience) for convex and three convex functions. Extensions, improvements are accomplished. Variety of Stolarsky type means of a concave (convex) functions are obtained.