Search or add a thesis

Advanced Search (Beta)
Home > Power harvesting through vibrations

Power harvesting through vibrations

Thesis Info

Author

Ammara Mehmood

Supervisor

Rashid Farid Chishti

Department

Department of Electronic Engineering

Program

BS

Institute

International Islamic University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2012

Thesis Completion Status

Completed

Page

64

Subject

Electronic Engineering

Language

English

Other

BS 681.7631 AMP

Added

2021-02-17 19:49:13

Modified

2023-01-08 02:09:38

ARI ID

1676722234000

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

خاتمہ کلام

قرآن مجید ایک مقدس کتاب ہےقرآن پر ایمان لاناہر مسلمان کے لئے لازم ہے۔جوشخص قرآن پر ایمان نہیں رکھتاوہ مسلمان نہیں ہو سکتا۔قرآن پر ایمان لانے کا مطلب یہ ہے کہ اسے اللّٰہ تعالیٰ کا کلام مانا جائےاور اسے آخری نازل شدہ کتاب تسلیم کیا جائے۔اس کی تعلیمات اور احکامات کو سچ مانتے ہوئےان پر عمل کیا جائے۔جس طرح حضرت محمد صلی اللّٰہ علیہ وسلم کے ذریعے دین اسلام کی تکمیل ہوئی ہےاسی طرح قرآن میں بھی پہلی تمام کتابوں کی بنیادی تعلیمات محفوظ کردی گئی۔قرآن حکیم اپنے اندر بہت سی اعجازی خصوصیات رکھتا ہے اس میں مختلف علوم و فنون ودیعت کر دیئے گئے ہیں۔ اس کا یہ کمال ہے کہ ایک آیت ایک کم پڑھے لکھے انسان کو سادہ نظر آتی ہے مگر ایک عالم کو وہی آیت حقائق و معارف سے لبریز دکھائی دیتی ہے۔اور پھر مزید یہ کہ متعدد علوم کے ماہرین کو وہی آیت اپنے اپنے علم و فن کے لحاظ سے مختلف نظر آتی ہے گویا کہ وہ مختلف علوم کے لحاظ سے بےشمار حکمتوں کا مجموعہ ہوتی ہے جس سے ہر شخص اپنے اپنے ظرف کے مطابق فائدہ حاصل کر سکتا ہے۔ اور یہ صرف خدا کے کلام کی خصوصیت ہو سکتی ہےورنہ انسانی کلام میں اس کی مثال ملنا ناممکن ہے۔قرآن مجید میں انسان کو سمجھانے کے لئے مختلف اسالیب استعمال ہوئے ہیں مثلاً کہیں قصص بیان کئے گئے ہیں تو کہیں امثال، کہیں تبشیر تو کہیں انذار، کہیں بیانیہ تو کہیں استفہامیہ، سوال گفتگو کی بنیاد ہے اسے مختلف مقاصد کے لئے استعمال کیاجاتا ہے ادب میں  استفہام کسی حقیقت سے مخاطب کو آگاہ کرنے مخاطب کو غور و فکر کی دعوت دینے اور اپنی بات کے اثبات کے معنی میں استعمال ہوتا ہے  قرآن مجید میں استفہام کا اسلوب بکثرت استعمال کیا گیا ہے  قرآن نے مخاطب...

Lunar Calendar and Ramadan Effect on Islamic Mutual Funds Performance in Pakistan

This report is principally intended to ascertain out the result of the lunar calendar with special focus on the holy month of Ramadan on the operation of Islamic mutual funds in Pakistan. Economic activity in Pakistan demands a different turn due to observation of fast and short working hours in the country in the month of Ramadan. This work utilizes the logit model to investigate the impact of lunar calendar generally and the holy month of Ramadan, specifically along the net asset values of the mutual fund. This study confirms lower expected growth of net asset value in the month of Ramadan and the other stages of the religious sentiment. Economic activity regains pace after Ramadan and Zulhajjah as evident from the probable increase of net asset value of the Islamic mutual funds in the month of Shawwal & Moharram following months of the Ramadan and Zulhajjah respectively.

Decision Support System for Detection of Hypertensive Retinopathy Using Avr and Papilledema

The interior and vital part of human eye is retina whose function is to capture and send images to brain. It consists of different structures along with two types of blood vessels; veins and arteries. These retinal blood vessels are affected by number of eye diseases such as Hypertensive Retinopathy (HR) and Diabetic Retinopathy (DR). HR is a retinal disease that is caused by consistent elevated blood pressure (hypertension). Many people in the World are suffering from HR disease; however, in most of cases, HR patients are unaware of it. The automated diagnostic systems are very useful for ophthalmologists to diagnose different retinal diseases. With the help of automated systems, the ophthalmologists can monitor and make treatment plan of retinal disease. Many researchers have developed different automated HR detection systems, but no automated system exists that detects and grades HR along with Papilledema (last stage of HR). Most of existing methods only performed artery venous classification rather than complete automated method for HR detection and grading. In this thesis, an automated system is presented that detects the HR at various stages using Arteriovenous Ratio (AVR) and Papilledema (optic disc swelling) signs. The proposed system consists of two modules i.e. vascular analysis for calculation of AVR and optic nerve head region analysis for Papilledema. AVR calculating stage consists of three major modules i.e. main component extraction, Artery and Vein (A/V) classification and AVR calculation. A new set of color and statistical features have been proposed in this research for accurate A/V classification. The proposed system effectively performs A/V classification and vessels width calculation for AVR computation to diagnose and grade HR. Second module detects and grades the Papilledema through analysis of fundus retinal images. The proposed system formulates a feature set which consists of Grey-Level Co-occurrence Matrix, optic disc margin obscuration, color and vascular features. A feature vector of these features is used for classification of normal and Papilledema images using Support Vector Machine (SVM) with its Radial Basis Function (RBF) kernel. The variations in retinal blood vessels, color properties, texture deviation of optic disc and its peripapillary region, and fluctuation of obscured disc margin are effectively identified and used by the proposed system for the detection and grading of Papilledema. In this thesis, a new local dataset AVRDB containing 100 images is developed for analysis of HR and annotated with assistance of expert ophthalmologists of Armed Forces Institute of Ophthalmology (AFIO), Pakistan. The proposed methods are evaluated on the images of INSPIRE-AVR, VICAVR, STARE and newly developed HR dataset (AVRDB). The proposed HR detection method shows the average accuracies of 95.14%, 96.82% and 98.76% for INSPIRE-AVR, VICAVR and AVRDB databases, respectively. It also shows HR grading results with average accuracies of 98.65%, 98.61% and 98.92% for INSPIRE-AVR, VICAVR and AVRDB databases, respectively. The proposed Papilledema detection method shows average accuracy of 92.86% and grading results with average accuracy of 97.85% on hybrid dataset of 160 images (70 images of AVRDB database and 90 images of STARE database), respectively. These results authenticate that this research is a milestone towards automated detection and grading of HR disease.