سید اطہر حسین آئی ۔ اے ۔ ایس
جناب سیٹھ عبدالعزیز انصاری صاحب کا غم ابھی تازہ ہی تھا کہ دارالمصنفین کی مجلس انتظامیہ کے ایک اور بہت معزز اور باوقار رکن جناب سید اطہر حسین صاحب آئی۔اے۔ایس بھی رحلت فرماگئے، اناﷲوانا الیہ راجعون۔
وہ یکم مارچ ۱۹۲۰ء کو پیدا ہوئے اعلیٰ تعلیم کے لیے الٰہ آباد یونیورسٹی میں داخل ہوئے، اور ایم۔ایس۔سی کی ڈگری لینے کے بعد ۱۹۴۲ء میں سرکاری ملازمت میں آگئے، ڈپٹی کلکٹری سے ترقی کر کے آئی۔اے۔ایس ہوئے اور حکومت اترپردیش کے اعلیٰ عہدوں پر فائز رہے، تقریباً سات برس تک مرکزی حکومت سے وابستہ رہے، ملازمت کے دوران مصر و امریکہ کے سفر بھی کیے، آخر میں ریاستی حکومت کے سکریٹری کی حیثیت سے ریٹائرڈ ہوکر فیض آباد میں مستقل طور پر قیام پذیر ہوگئے تھے کہ یہیں ۲۰ دسمبر کو قلبی عارضہ میں انتقال ہوگیا، والبقاء ﷲ وحدہ۔
جناب سید اطہر حسین صاحب نے سرکاری ملازمت کی گوناگوں مشغولیتوں کے باوجود تحریر و تصنیف کا مشغلہ بھی جاری رکھا، اور انگریزی اور اردو میں اسلام کے مختلف پہلوؤں پر چھوٹی بڑی درجنوں کتابیں یاد گار چھوڑیں، شعر و سخن کا بھی عمدہ ذوق تھا، اس کی ابتداء رفیقہ حیات کی غمناک موت سے ہوئی، وہ بڑے زودگو تھے، بہت جلدان کی غزلوں کے کئی مجموعے شائع ہوئے، پھر نعتیہ اور مذہبی شاعری کی طرف متوجہ ہوئے، بڑے اچھے مترجم بھی تھے، متعدد اہم دینی کتابوں کے ترجمے انگریزی میں کئے ، انتقال سے ایک ماہ قبل جناب سید صباح الدین عبدالرحمن مرحوم کی کتاب ’’اسلام میں مذہبی رواداری‘‘ کا انگریزی ترجمہ مکمل کر کے دارالمصنفین بھیجا، ان کو ترجمہ پر حیرت انگیز قوت تھی، ۸۲ء میں وہ کسی سرکاری کام سے دہلی گئے تھے، اسی زمانہ میں ہمدرد نگر میں بین الاقوامی قرآن کانگریس ہورہی تھی، اپنی دلچسپی کی وجہ سے...
Background and Aim: To compare the effects of mulligan rotational movement and medial gapping technique on pain, range of motion and disability in knee osteoarthritis patients.
Methodology: This study was a Randomized Clinical Trial. The data was collected using a convenience sampling technique. Data was collected from Jinnah Hospital Lahore, from 15th December – 30th June 2022.36 subjects (males and females) were recruited in two groups. The first group received Mobilization with movement along with a conservative treatment protocol. The second group received the Medial gapping technique along with conservative treatment protocol. Each group was treated for four weeks in which three sessions per week were given. Numeric pain rating scale and the disability index were used as outcome measures. Data was analyzed through statistical package for the social sciences (SPSS) version 25.
Results: Within-group comparison by paired t-test showed the p-value was significant <.05, indicating that both treatment was effective in improving symptoms. Between groups, comparison by independent t-test showed that Mulligan Mobilization Technique is more effective than the medial gapping technique in improving pain disability and quality of life.
Conclusion: The study concluded that Mulligan Mobilization Technique provides more clinical benefits regarding pain, disability and range of motion in osteoarthritis patients than Medial Gapping Technique.
Medical image processing is one of the most attention gaining research areas that utilizes the technology for improving the quality of human life through a more precise and rapid diagnosis systems. This thesis focuses on computer assisted diagnosis of brain neoplasms which is amongst the most fatal cancers. Though, their exact cause is still unknown but early detection anddiagnosisofcorrectneoplasmtypeisveryimportantforpatient’slifeandfurthertreatment planning. Currently, the treatment of brain neoplasm depends on clinically observed symptoms, appearance of radiological tests, and often the microscopic examination of neoplasm’s tissues (histopathology or biopsy report). Magnetic Resonance Imaging (MRI) is the state of art technique to diagnose brain neoplasms and monitor their treatment. It provides a noninvasivewaytoimprovethequalityofthepatient’slifethroughamoreaccurateandfastdiagnosis and with minor side-effects, leading to an effective overall treatment. However, MRI does not provide any information about exact type and grade of neoplasm. The final decision is based on biopsy report of patient which is considered as gold standard, despite all risks associated with surgery to obtain a biopsy. With rapid advancement in technology, the researchers are continuously working on computerized techniques or computer assisted diagnostic tools to provide fast identification, correct diagnosis and effective treatment of brain neoplasm. The aimofthepresentthesisistodesign,implement,andevaluateasoftwareclassificationsystem fordiscriminatingthreegradesofbrainneoplasmonMRI.Limitedbrainneoplasmimagedata isoneofthebiggestissuesinthisresearchareabecausecollectionofthistypeofdatarequires years and years. Normally, we find studies working on images of some specific hospital orwebsite. Inaddition,directcomparisonofthesestudiesisnotpossiblebecauseeachstudyhad worked on different types of neoplasm and various sizes of image data. We have addressed this issue by proposing a new image cropping technique for handling images of different dimension for the same classifier. This new system is capable of handling image datasets from different institutions with various image sizes and resolutions for comparing, regulating and sharing of research. It is also observed, that lesser training and testing images in a particular class of neoplasm badly effect the classification accuracy. By using this generalized system, moreimagesamplesofaneoplasmclasscanbetakenfromotherinstitutionsorwebsitestoimprovetheclassificationaccuracy. ForclassificationofMRIimages,majorityoftheresearchers haveworkedonstatisticalfeaturesofneoplasmregionbutmulti-resolutiontransformsforfeature extraction, are not much explored. Besides this, classification of normal and pathological brain is mostly addressed but very few studies are found on multi-classification of different neoplasm types. The main objective of this thesis is to explore the performance of different multi-resolution transform based feature extraction techniques for multi-classification problem of brain neoplasm type (grade II, grade III and grade IV gliomas). Discrete Wavelet Transform (DWT) is one of the most popular multi resolution transform, extensively used as feature extraction technique for binary (normal vs abnormal brains) brain neoplasm classification systems. In this thesis, a stationary and time invariant Non Subsampled Contourlet Transform (NSCT) with Gray Level Co-occurrence Matrix (GLCM) is used for computation of feature vector in brain neoplasm classification system. This NSCT-GLCM based classification system is also compared with conventional DWT-GLCM based classification system, for the same experimental setup. It is found that NSCT-GLCM based system perform better than DWT-GLCM based system. For further improvement in neoplasm discrimination accuracy, in last algorithm, a multi resolution transform based hybrid feature extraction technique is introduced. This hybrid technique is comprised of conventional DWT, NSCT and GLCM. The quantitative performance analysis showed that hybrid feature extraction technique per formed much better than the previous two techniques (DWT-GLCM and NSCT-GLCM) with the highest accuracy of 88.88%. The developed brain neoplasm classification techniques can better assist the physician’s ability to classify and analyze pathologies leading for a more reliable diagnosis and treatment of disease.