Search or add a thesis

Advanced Search (Beta)
Home > Determinants of child labour:A case study of Quetta and Pishin districts Balochistan .

Determinants of child labour:A case study of Quetta and Pishin districts Balochistan .

Thesis Info

Author

Noor Ahmed

Supervisor

Ghulam Mustafa Sajid

Department

Department School of Economics

Program

MS

Institute

International Islamic University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2013

Thesis Completion Status

Completed

Page

ix,95

Subject

Economics

Language

English

Other

MS 331.31 NOD

Added

2021-02-17 19:49:13

Modified

2023-02-17 21:08:06

ARI ID

1676722698421

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

تخلیق، تحقیق اور تنقید کا باہمی رشتہ

موضوع6:تخلیق، تحقیق اور تنقید کا باہمی تعلق
ادب:
• ادب ایک علمی اصطلاح ہے جو نظمیہ اور نثری ادب کے لیے استعمال کی جاتی ہے۔
• جذبات کی دلکش موسیقی کا نام ہے۔
• محسوسات و تخیل کا دل نشین رقص ادب ہے۔
ڈاکٹر طہ حسین کے مطابق:
"ادب عربی زبان سے آیا ہے۔ اس کے معنی دعوت کا بلاوا ہے۔ یہ عربی کا ایک لفظ داب ہے جس کی جمع اداب ہے۔اداب بعد میں آداب بن گیا جس کے معانی عادت، ورثہ اور عمل کا طریقہ کے ہیں۔قدیم عربی کے قریشی لہجے میں ادب کا لفظ شامل نہیں تھا۔یہ لفظ پہلی صدی ہجری کے بعد عربی لغت میں شامل ہوا۔بنو امیہ کے دور میں یہ لفظ تعلیم کے معنوں میں استعمال کیا گیا۔اس زمانے میں ادب سے مراد روایت کے ذریعے پڑھانا تھا۔بنو عباس کے دور میں ادب کے مفہوم میں تنگی پیدا ہوئی اوراس سے کم و بیش وہ معنی لئے گئے جو انگریزی میں لٹریچر سے لئے جاتے ہیں۔"
عقل و شعور کے تحرک اور حسن وجمال کے دل پھینک لطیف عمل کا نام ادب ہے۔ادب انسانی محسوسات کا دانشمندانہ اور فنکارانہ اظہار ہے۔یہ اظہار ان لوگوں کے قلم سے ہوتا ہے جو زندگی کے دو پہلو دکھوں ومصیبتوں اور خوشیوں ومسرتوںکا اجتماعی حالات میں انفرادی تجزیہ کرتے ہیں۔قلم سے وہ لوگ جو زندگی کے دکھ سکھ، خوشیاں غمیوں میں زندگی کے اجتماعی حالات کاانفرادی تجزیہ کرتے ہیں انہیں ادیب کہتے ہیں۔ادبی تخلیق، تحقیق اور تنقید ایک بے حد مضبوط اور مستحکم مثلٹ ہے۔آپس میں ان کے ربط میں ہی سماج کی بقاء ہے۔
تحقیق:
• سچائی یا حقیقت کی تلاش کا نام تحقیق ہے۔
• تحقیق یقین یا تصدیق کرنے کو کہتے ہیں۔
• تحقیق کے ذریعے کسی امر کو اس کی اصل شکل میں دیکھنا مقصود ہوتا ہے۔
• ادبی تخلیق سماج...

تولیدی اور جنسی صحت: اسلامی تعلیمات کی روشنی میں

Human is the combination of body and spirit, Islām pays attention to the balanced growth and construction of the human personality considering the health of both body and spirit. As Muslims, we believe that Islām is the perfect code of life, which provides guidance for the solutions of all individual and collective problems of human beings. Therefore, we believe that Islām has a complete system of instructions for the development and reformation of spirit on the one hand, and, on the other hand, it has prescribed guidelines for the upkeeping and maintenance of the body. Reproductive and sexual health is one of the major problems of human beings. Eastern societies are comparatively shy to discuss this problem, unless necessary, while the western societies have introduced sex education in their schools to teenagers. We being Muslims tend to look towards our religion to guide us in such a way, that it may educate us, on the one hand, and on the other, it may guide us to adopt the required attitude to avoid the negativity of its awareness. Although the issue of reproductive health is considered as the specialty of the modern age, however, Islamic instructions very obviously discuss them from the beginning. In this article, the author has explored and elaborated Islamic teachings regarding the reproductive health and sexual instructions and discussed them in order to prove that Islām has the full capacity to solve the current social problems of reproductive health and sexual health.

Segmentationandclassificationofbraintumormrimages Throughadvancemachinelearning Methods

The main objective of this research work is to develop, test and evaluate an identification support system that is able to provide accurate, fast and reliable diagnosis of brain tumor in MRimages. Keeping in consideration that human decision making skills are mainly dependent on experience and prone to error due to fatigue, Artificial Intelligence (AI) can be utilized as an effective aid in the field of medicinal sciences for tumor diagnosis through image recognition. Therefore, this thesis strives to develop such an intelligent system that can be used for the segmentation and classification of infiltrative brain tumors known as Low Grade and High Grade in MR images. In order to tackle the complex task of brain tumor segmentation in MR images, we present an adaptive algorithm that formulates an energy based stochastic segmentation with a level set methodology. This hybrid technique efficiently matches, segments and determines the anatomic structures within an image by using global and local energies. After evaluating the algorithm on low and high grade images, it was noted that there was an improvement in the resultant similarity between segmented and truth (original) images. Once effective segmentation was achieved we could then work on the next step of tumor identification; classification. In the second part of the process we proposed two classification frameworks, machine learning and deep learning. In machine learning, we first extracted 22 probabilistic features using gray level co-occurrence matrix methodology that served as input features for the classifiers. Then we showed the improvement in classification (through machine learning) accuracy by providing two methodologies in which the first one involved v classification directly after feature extraction whereas in the second we reduced the extracted features using principal component analysis and then applied those reduced features to several classifiers. The second framework that we proposed was the brain tumor classification of segmented MR images through optimized CNN-Deep belief learning model. It scales to various image sizes by distributing the hyper-parameters and weights among all locations in an image. The presented model is translation invariant and is compatible with top-down and bottom-up probabilistic inference. This hierarchical classifier was optimized by regularization, that mitigates the effect of overfitting for small datasets, stochastic gradient decent, which works efficiently by utilizing only a small set of samples from a whole training set to infer the gradient and fine tuning of constraints. A comparative analysis, based on accuracy, error/loss and computation time, was carried out between the pre-processed non-segmented and segmented MR images after classification was completed. The results showed that the accuracy of proposed optimized CNN-deep belief learning classifier with segmented MR images was higher while the loss and execution time were reduced. These methodologies transcend the confines of MR image processing due to their effective modularity allowing them to be suitable for other medical imaging and computer vision tasks.