Search or add a thesis

Advanced Search (Beta)
Home > Mobilink-A market leader and a trend setter

Mobilink-A market leader and a trend setter

Thesis Info

Author

Sadaf Minhaj

Department

Department of Technology Management

Program

BBA

Institute

International Islamic University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2006

Thesis Completion Status

Completed

Subject

Technology Management

Language

English

Other

BS 658.406 SAM

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676722995614

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

نہال سیوہاروی

نہالؔ سیوہاروی
جناب نہال ؔ سیوہاروی کی شہرت کاآغاز ’’برہان کے شاعر خاص‘‘ کی حیثیت سے ہوا جس میں تقسیم ہند سے قبل وہ بالا لتزام غزلیں اورنظمیں لکھتے رہے۔ مرحوم کاذوقِ شعر وسخن اور ملکۂ شعر گوئی فطری اوروہبی تھاجس کوانھوں نے خلاف طبع معمولی سی سرکاری ملازمت کے باوجود مسلسل مطالعہ اور مشق و مزاولت کے ذریعہ جلا دے کراتنا اجاگرکرلیا تھاکہ ان کاشمار پختہ کار اورصاحب فن اساتذہ کے زمرہ میں ہونے لگاتھا۔ ان کے کلام میں دردواثر، سوزو گداز، عمقِ خیال،نزاکتِ احساس اورلطافت وشستگیِ بیان، جوحسنِ شعر کی جان ہیں یہ سب اوصاف پائے جاتے تھے۔ علاوہ سینکڑوں منتشر غزلوں اورنظموں کے آزادی پران کی رباعیات کاایک مجموعہ مکتبۂ برہان سے اور نظموں اورغزلوں کا ایک مجموعہ ’’شباب و انقلاب‘‘ کے نام سے دلی کے ہی کسی ایک مکتبہ کی طرف سے شائع ہوچکے ہیں۔
؂ حق مغفرت کرے عجب آزاد مرد تھا
[جنوری ۱۹۵۲ء]

فقہ اسلامی اور منو دھرم شاستر كا تقابلی مطالعہ

Fiqh Islami or Islamic Jurisprudence is Muslim sacred law based on primary Islamic sources i. E. Quran and Sunnali and which provides code ofconduct to Muslims in all spheres of life. Manu Dharam Shastra or laws of Manu is one of the standard books of Hindu religious law. This article aims at comparative study of 'lawsuit in Hinduism and Islam' in light ofFiqh Islamic and Manu Dharam Shastra.

Numerical Solution of Boundary and Initial Boundary-Value Problems Using Polynomial and Non-Polynomial Spline Functions Method

The boundary and initial boundary value problems have always played a vital character in the fields of science and technology. Different numerical techniques are used to obtain numerical approximations of such problems. We present and illustrate novel numerical techniques for the numerical approximations of higher order boundary and initial boundary value problems. The numerical techniques derived in this research work are based upon the fact of employing polynomial cubic spline (PCS) scheme and non polynomial cubic spline (NPCS) scheme in conjunction with the decomposition procedure. In the case for ordinary differential equations, the decomposition procedure is used to reduce the higher order boundary value problems (BVPs) into the corresponding system of second order boundary value problems. Then PCS and NPCS schemes are constructed for each second order ordinary differential equation. The first order derivatives are approximated by the central finite differences of(ℎ ). For partial differential equations, the second order time derivatives are decomposed into the first order derivatives. The process of decomposition generates a linear system of partial differential equations, where the first order time derivatives are approximated by the central finite differences. The performance of the new derived schemes is illustrated by numerical tests that involve comparing numerical approximations with analytical solutions on a collection of carefully selected problems from the literature. These problems range from those involving higher order ordinary differential equations, for example, fifth, sixth, seventh, twelfth, and thirteenth order ordinary differential equations and partial differential equations, like fourth order parabolic equations, one dimensional hyperbolic telegraph equations, and one dimensional wave equations. In addition, Adomian decomposition method is used to construct the boundary conditions for the solution of fourth order parabolic equations.