سید سجاد حیدریلدرم مرحوم
۱۲؍ اپریل ۱۹۴۳ء کی رات کو سید سجاد حیدر مرحوم نے جو ادب کی دنیا میں یلدرم کے نام سے مشہور تھے، قلب کے عارضہ سے دفعتہ وفات پائی، یہ علی گڑھ کالج کے پرانے تعلیم یافتوں میں اور اسی تعلق سے کالج کے ان چند طالب علموں میں تھے جنہوں نے مولانا شبلی مرحوم کے درس اور صحبت سے شعر و ادب کا ذوق حاصل کیا تھا، مرحوم مولانا کے درس کے اس قسم کے واقعات کو مزے لے لے کر بیان کیا کرتے تھے، ان کا اصل وطن نہٹور (یوپی) میں تھا، ۱۹۰۱ء میں بی، اے کی سند پاکر تعلیم سے فراغت پائی۔
ہماری زبان میں اس وقت ادب لطیف کا جو رواج ہے، اس کے پرانے لکھنے والوں میں سب سے پہلا نام سید حیدر مرحوم کا ہے اور چونکہ قادر مطلق کو ان سے یہ کام لینا تھا، اس لئے ان کی زندگی میں اس کا مناسب سامان بھی پیدا کردیا یعنی یہ کہ کالج کے زمانہ ہی میں ان کو ترکی پڑھنے کا خیال ہوا، علی گڑھ میں نواب محمد اسمٰعیل خان صاحب رئیس علی گڑھ کے والد بزرگوار ہجرت کرکے مکہ معظمہ چلے گئے تھے، وہیں نواب محمد اسمٰعیل خاں صاحب کی تعلیم و تربیت ہوئی، اس زمانہ میں ترکی وہاں کی سرکاری زبان تھی، اس لئے ان کو ترکی بھی پڑھائی گئی اور جب وہ ہندوستان آئے تو وہ ترکی ادب کے گویا نمائندہ ہوکر آئے، چنانچہ سرسید کے ’’تماشائے عبرت‘‘ میں وہ اسی ہیئت سے اسٹیج پر آئے ہیں اور معارف علی گڑھ میں جس کے وہ شریک ایڈیٹر تھے، وہی ترکی ادب کی اشاعت کا ذریعہ بنے۔
بہرحال سجاد حیدر مرحوم نے انہی سے ترکی زبان سیکھی اور اس کا یہ فائدہ ان کو پہنچا کہ سرکار انگریزی نے ان کو علی گڑھ...
Qasim Amin was a lawyer as well as great Egyptian personality who promoted his progressive approach towards women’s liberation. He is known as the founder of the Women 's Liberation Movement in Egypt. As he practically initiated the Women Liberation Movement that is why he is regarded as founder-leader of the movement. For this purpose* he wrote and published his three most popular books which are: 's. Tahrir-ul-Mara’h (The Liberation of Women) Y. Al-Mara’ h — Al-Jadidah (The New Women) r. Al-Misriuoon - Difa-anil-Islam-wal-Muslimeen t. Al-Misriuoon (The Egyptians) Defense from Islam and Muslims) In this article I have tried to highlight his thoughts that are presented in his books.
The internet was initially designed to present information to users in English. However, with the passage of time and the development of standard web technologies such as browsers, programming languages, libraries, frameworks, databases, front and back-ends, protocols, APIs, and data formats, the internet became a multilingual source of information. In the last few years, the natural language processing (NLP) research community has observed a rapid growth in online multilingual contents. Thus, the NLP community maims to explore monolingual and cross-lingual information retrieval (IR) tasks. Digital online content in Urdu is also currently increasing at a rapid pace. Urdu, the national language of Pakistan and the most widely spoken and understandable language of Indian sub-continent, is considered a low-resources language (Mukund, Srihari, & Peterson, 2010). Part of speech (POS) tagging and named entity recognition (NER) are considered the most basic NLP tasks. Investigation of these two tasks in Urdu is very hard. POS tagging, the assignment of syntactic categories for words in running text is significant to natural language processing as a preliminary task in applications such as speech processing, information extraction, and others. Named entity recognition (NER) corresponds to the identification and classification of all proper nouns in texts, and predefined categories, such as persons, locations, organizations, expressions of times, quantities and monetary values, etc. it is considered as a sub-task and/or sub-problem in information extraction (IE) and machine translation. NER is one of the hardest task in Urdu language processing. Previously majority Urdu NER systems are based on machine learning (ML) models. However, the ML model needs sufficiently large annotated corpora for better performance(Das, Ganguly, & Garain, 2017). Urdu is termed as a scared resource language in which sufficiently large annotated corpus for ML models’ evaluation is not available. Therefore, the adoption of semi-supervised approach which is largely dependent on usage of the huge amount of unlabeled data is a feasible solution. In this thesis, we propose a generic Urdu NLP framework for Urdu text analysis based on machine learning (ML) and deep learning approaches. Initially, we addressed POS challenges by developing a novel tagging approach using the linear-chain conditional random fields (CRF). We employed a strong, stable, balanced language-independent and language dependent feature set for Urdu POS task and used the method of context words window. Our approach was evaluated against a support vector machine (SVM) technique for Urdu POS - considered Abstract WAHAB KHAN Reg: No. 72-FBAS/PHDCS/S12 vi as the state of the art - on two benchmark datasets. The results show our CRF approach to improving upon the F-measure of prior attempts by 8.3 to 8.5%. Secondly, we adopted deep recurrent neural network (DRNN) learning algorithms with various model structures and word embedding as a feature for the task of Urdu named entity recognition and classification. These DRNN models include long short-term memory (LSTM) forward recurrent neural network (RNN), LSTM bi-directional RNN, backpropagation through time (BPTT) forward RNN and BPTT bi-directional RNN. We consider language-dependent features such as part of speech (POS) tags as well as language independent features such as N-grams. Our results show that the proposed DRNN-based approach outperforms existing work that employ CRF based approaches. Our work is the first to use DRNN architecture and word embedding as a feature for Urdu NER task and improves upon prior attempts by 9.5% in the case of maximum margin.