Search or add a thesis

Advanced Search (Beta)
Home > The waste land: a mythopoeia the working of mythology in the poem

The waste land: a mythopoeia the working of mythology in the poem

Thesis Info

Author

Sharif, Ahmad Naveed

Department

Department of English

Program

MA

Institute

International Islamic University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2000

Thesis Completion Status

Completed

Subject

English

Language

English

Other

MA/MSc 821.912 SHW

Added

2021-02-17 19:49:13

Modified

2023-02-17 21:08:06

ARI ID

1676723154103

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

تصنیفی وصحافتی زندگی کاآغاز

۱۹۱۸ ء میں وہ بجنور میں اپنے بڑے بھائی ابو الخیر کے پاس چلے گئے۔جہاں انہوں نے صحافت کو بطورپیشہ اپنا لیا۔۱۹۱۹ ء میں جبل پور چلے گئے جہاں انہوں نےکانگرس کے پرچہ ہفت روزہ تاج میں کام شروع کردیا اور ۱۹۲۰ ء تک مدیر کے فرائض انجام دیے۔[[1]]

مولانا کچھ عرصہ تحریک ہجرت میں بھی کام کرتے رہے۔ یہ ۱۹۲۱ ء کا زمانہ تھا کہ مولانا مودودی کا تعارف جمعیت العلمائے ہند کے قائدین مولانا مفتی کفایت اللہ اور مولانا احمد سعید سے ہوگیا۔ وہ مولانا کی صلاحیتوں سے بے حد متاثر ہوئے ۔اور انھیں جمیعت کے اخبار "مسلم" کی ادارت کی ذمہ داریاں سونپ دیں جو انہوں نے ۱۹۲۴ ء تک نبھائیں ۔[[2]]بعد ازاں جب مسلم الجمیعۃ بن گیا تو اس میں مولانا ادار ت کے فرائض انجام دیتے رہے ۔مولانا نے ۱۹۲۵ میں الجمیعۃ کے اداریوں میں "اسلامی قوت کا اصلی سر چشمہ " کے عنوان سے مسلسل مضامین شائع کیے جنھیں شبیر نیاری نے مرتب کیا ۔ ان مضامین کو کتابی شکل میں شائع کیا جس کا نام " اسلام کا سر چشمہ قوت"ہے ۔اس کتاب کے شائع ہونے سے پہلے "الجہاد فی الاسلام " کو ہی مولانا کی پہلی تصنیف خیا ل کیا جاتا ہے ۔[[3]]



[[1]]         ایضا ً۔

[[2]]          عبدالعزیزبلوچ، مفسرین عظام اوران کی تفسیری خصوصیات ، اسلامک پبلی کیشنز، لاہور، ص۱۹۸۔

[[3]]         فقیرمحمد ،اصول تفسیر وتاریخ تفسیر ،ترجمان القرآن، لاہور،۲۰۰۰ء، ص۱۳۳

زرتشت ازم کے شعائر، رسوم اور روایات: اسلامی تناظر میں اجمالی جائزہ

Zoroastrianism is an ancient Iranian religion founded by an Iranian Prophet and scholar Zoroaster. It is claimed by some foremost scholars that this is the most ancient religion of the world which influenced the other major religions of the world like, Judaism, Christianity and Islam. The main source to know the Zoroastrianism is Avesta, Denkart and Bundahishn (sacred books) from which we know the terminologies and traditions of this religion. Main two spirits are Ahura mazda (god of pleasure and goodness) and Ahriman (god of evil) and seven more main spirits which are called as angels are Amesha spentas which show the actual spirit and direction of this ancient religion. Some of the concepts and traditions are same which exists in Islam but with different names and features, like prayers and matters after death, heaven and hell. In this article, main focus is on tradition and terminologies of this ancient religion to know its actual spirit to get the basic information and main themes for initial reader of this religion from Islamic theological pers-pective. No doubt, Zoroastrianism is one the amended religions exist on earth yet because of the similarity of various rituals with Islam. However, Zoroastrianism is being considered reve-aled religion and Zoroaster as true prophet of Allah.

Mathematical Aspects of Some Graph Invariants

A graph invariant is a numerical quantity that remains unchanged under graph isomorphism. Topological indices are graph invariants that represent certain topological features of a graph. For example, connectivity, planarity, girth and diameter are topological features of a graph. Similarly, degrees and distances in a graph are examples of some basic topological features. Some topological indices of a graph can be determined solely in terms of vertex degrees or in terms of distances between the vertices. The former is called a degree-based index and the later is a distance-based index. Another type of topological invariants is the spectrum-based indices that are obtained from the eigenvalues of a graph. Finding an extremal graph with respect to a topological index is the problem of determining a graph maximizing or minimizing the value of that parameter among all graphs of fixed order. Topological descriptors are used in QSAR/QSPR studies to correlate physico-chemical properties of molecules. Our primary focus in this thesis is the study of extremal graphs with respect to some distance-based topological invariants. The graphs on which we emphasize in this part include connected n-vertex graphs with n−1 edges (i.e. trees), connected n-vertex graphs containing n edges (i.e. unicyclic graphs) and connected n-vertex graphs with n + 1 edges (i.e. bicyclic graphs), where bicyclic graphs may contain two or three cycles. We also study the corresponding extremal conjugated graphs with respect to these indices. We further our investigation to compute closed analytical formulas for some recently defined distance-based indices of join and corona product of any finite number of graphs. Moreover, we compute distance-based indices of some 3-fence graphs and their line graphs. We also compute these indices of the finite square grid and its line graph. The mathematical concept of estimation can be defined as a process of approximating a desired result with a statistical technique or software tool. The second aim of this thesis is to estimate two spectrum-based indices for the molecular graphs of some nanotubes. More results of such kind are obtained for all nanocones with one arbitrary cycle as the core.