مفتی اعظم فلسطین سید امین الحسینی
افسو س ہے گزشتہ ماہ عالم اسلام کی ایک اورنہایت بلند پایہ شخصیت یعنی مفتی اعظم فلسطین سید امین الحسینی۷۷برس کی عمر میں وفات پاگئے۔اناﷲ و اناالیہ راجعون۔وہ ۱۸۹۷ء میں قدس کے ایک معزز گھرانے میں پیداہوئے تھے۔ ابتدائی تعلیم اورثانوی تعلیم وطن مالوف میں ہی پائی اس کے بعد مصر چلے گئے اوروہاں جامعہ ازہر میں علوم دینیہ واسلامیہ میں تکمیل کے مدارج ومراتب طے کئے۔ جنگ عالمگیر اوّل(۱۹۱۴ء۔۱۹۱۸ء) کے دوران ترکی افواج سے وابستہ رہے۔۱۹۲۱ء میں فلسطین کے مفتی اور۱۹۲۲ء میں وہاں کی مجلس اعلیٰ اسلامی کے صدر مقرر ہوئے۔ ۱۹۳۱ء میں قدس میں جو موتمر عالم اسلامی ہوئی تھی اُس کے صدر منتخب ہوئے۔۱۹۳۶ء میں جب انگریزوں کی مداخلت بے جا کے باعث فلسطین میں شورش اورہنگامے بپا ہوئے تووہ لبنان آگئے اور۱۹۳۷ء سے۱۹۳۹ء تک یہاں مقیم رہے پھر عراق چلے گئے اورسید رشید عالی الگیلانی نے انگریزوں کے خلاف جو بغاوت کی تھی اُس میں بڑی سرگرمی اور جوش سے حصہ لیا۔ لیکن جب یہاں کے سیاسی حالات میں انقلاب رونما ہواتووہ بھاگ کرپہلے ایران اور پھر وہاں سے جرمنی گئے اور۱۹۴۱ء سے ۱۹۴۵ء جب کہ دوسری عالمگیر جنگ میں جرمنی کوشکست فاش ہوئی اوراتحادیوں نے اُس پرقبضہ کرلیا،وہاں مقیم رہے جنگ کے خاتمہ پرفرانس میں قید ہوگئے۔۱۹۴۶ء میں رہا ہوکر مصر آگئے۔ مرحوم کی پوری زندگی فلسطین کی آزادی وخودمختاری اوریہودیوں کووہاں سے بے دخل کرنے کے لیے وقف تھی چنانچہ پہلی جنگ عظیم عالمگیر کے خاتمہ پرجب مجلس اقوام متحدہ کی ایک قرارداد کے مطابق۱۹۲۲ء میں فلسطین پربرطانوی انتداب قائم ہواتواُس وقت اس کی مخالفت میں اوراس کے بعد ۱۹۴۷ء کے خاتمہ پرجب فلسطین کی تقسیم اوراسرائیل کے قیام کافیصلہ ہواتواب اُس کی مقاومت میں کوئی سیاسی اورجنگی تدبیر ایسی نہیں تھی جوانھوں نے اختیار نہ کی ہو۔ وہ ہرمحاذ پرلڑے، ہرمورچہ پرانھوں نے دادشجاعت...
Reincarnation is a basic Hindu belief according to which the soul of a person is recreated for second time in different shapes according to their different actions. It is known as the belief of Samsara or reincarnation in Hinduism. If the person who passes away is good, his soul is transferred into a beautiful and nice body like that of birds etc. But if he is an evil person, his soul is transferred into ugly insects and animals etc. According to this belief, the difference between two human beings is due to the difference in their previous action or “karma” that he has committed in his previous birth. Human actions cannot be fruitful in this world and this is why a second birth is needed. This belief is wrong from Shariah perspective and it contradicts the basic Islamic belief of resurrection. Reincarnation assumes that there is no specific day on which actions will be rewarded; rather it is Auagun or Juni Cycle through which a human being deserves positive or negative reward. Imam Razi has refuted this belief through both logical and textual evidences. He has also replied the objections raised against the covenant of “alast”. (الست) According to Shariah, there is a second world beyond this physical for reward or punishment of deeds which is known as the Day of Judgment Doomsday. On this day, the Scale will be set and human actions will be weighed. Consequently, he will deserve either Paradise or hell. Paradise is an abode of perpetual rest and satisfaction whereas hell is a place of humiliation and degradation.
To determine whether or not a given graph has a hamiltonian cycle is much harder than deciding whether it is Eulerian, and no algorithmically useful characterization of hamiltonian graphs is known, although several necessary conditions and many suf- ficient conditions (see [6]) have been discovered. In fact, it is known that determining whether there are hamiltonian paths or cycles in arbitrary graphs is N P-complete. The interested reader is referred in particular to the surveys of Berge ([5], Chapter 10), Bondy and Murty ([10], Chapters 4 and 9), J. C. Bermond [6], Flandrin, Faudree and Ryj ́ a c ˇ stek [21] and R. Gould [27]. Hamiltonicity in special classes of graphs is a major area of graph theory and a lot of graph theorists have studied it. One special class of graphs whose hamiltonicity has been studied is that of Toeplitz graphs, introduced by van Dal et al. [13] in 1996. This study was continued by C. Heuberger [32] in 2002. The Toeplitz graphs investigated in [13] and [32] were all undirected. We intend to extend here this study to the directed case. A Toeplitz matrix, named after Otto Toeplitz, is a square matrix (n × n) which has constant values along all diagonals parallel to the main diagonal. Thus, Toeplitz matrices are defined by 2n − 1 numbers. Toeplitz matrices have uses in different areas in pure and applied mathematics, and also in computer science. For example, they are closely connected with Fourier series, they often appear when differential or inte- gral equations are discretized, they arise in physical data-processing applications, in viiviii the theories of orthogonal polynomials, stationary processes, and moment problems; see Heinig and Rost [31]. For other references on Toeplitz matrices see [26], [28] and A special case of a Toeplitz matrix is a circulant matrix, where each row is ro- tated one element to the right relative to the preceding row. Circulant matrices and their properties have been studied in [14] and [28]. In numerical analysis circulant matrices are important because they are diagonalized by a discrete Fourier trans- form, and hence linear equations that contain them may be quickly solved using a fast Fourier transform. These matrices are also very useful in digital image processing. A directed or undirected graph whose adjacency matrix is circulant is called cir- culant. Circulant graphs and their properties such as connectivity, hamiltonicity, bipartiteness, planarity and colourability have been studied by several authors (see [8], [11], [15], [25], [35], [38], [41] and [24]). In particular, the conjecture of Boesch and Tindell [8], that all undirected connected circulant graphs are hamiltonian, was proved by Burkard and Sandholzer [11]. A directed or undirected Toeplitz graph is defined by a Toeplitz adjacency matrix. The properties of Toeplitz graphs; such as bipartiteness, planarity and colourability, have been studied in [18], [19], [20]. Hamiltonian properties of undirected Toeplitz graphs have been studied in [13] and [32]. For arbitrary digraphs the hamiltonian path and cycle problems are also very dif- ficult and both are N P-complete (see, e.g. the book [22] by Garey and Johnson). It is worthwhile mentioning that the hamiltonian cycle and path problems are N P- complete even for some special classes of digraphs. Garey, Johnson and Tarjan shows [23] that the problem remains N P-complete even for planar 3-regular digraphs. Some powerful necessary conditions, due to Gutin and Yeo [10], are considered for a digraphix to be hamiltonian. For information on hamiltonian and traceable digraphs, see e.g. the survey [2] and [3] by Bang-Jensen and Gutin, [9] by Bondy, [29] by Gutin and [39] by Volkmann. In this thesis, we investigate the hamiltonicity of directed Toeplitz graphs. The main purpose of this thesis is to offer sufficient conditions for the existence of hamil- tonian paths and cycles in directed Toeplitz graphs, which we will discuss in Chapters 3 and 4. The main diagonal of an (n × n) Toeplitz adjacency matrix will be labeled 0 and it contains only zeros. The n − 1 distinct diagonals above the main diago- nal will be labeled 1, 2, . . . , n − 1 and those under the main diagonal will also be labeled 1, 2, . . . , n − 1. Let s 1 , s 2 , . . . , s k be the upper diagonals containing ones and t 1 , t 2 , . . . , t l be the lower diagonals containing ones, such that 0 < s 1 < s 2 < · · · < s k < n and 0 < t 1 < t 2 < · · · < t l < n. Then, the corresponding di- rected Toeplitz graph will be denoted by T n s 1 , s 2 , . . . , s k ; t 1 , t 2 , . . . , t l . That is, T n s 1 , s 2 , . . . , s k ; t 1 , t 2 , . . . , t l is the graph with vertex set 1, 2, . . . , n, in which the edge (i, j), 1 ≤ i < j ≤ n, occurs if and only if j − i = s p or i − j = t q for some p and q (1 ≤ p ≤ k, 1 ≤ q ≤ l). In Chapter 1 we describe some basic ideas, terminology and results about graphs and digraphs. Further we discuss adjacency matrices, Toeplitz matrices, which we will encounter in the following chapters. In Chapter 2 we discuss hamiltonian graphs and add a brief historical note. We then discuss undirected Toeplitz graph, and finally mention some known results on hamiltonicity of undirected Toeplitz graphs found by van Dal et al. [13] and C. Heuberger [32].x Since all graphs in the main part of the thesis (Chapters 3 and 4) will be directed, we shall omit mentioning it in these chapters. We shall consider here just graphs without loops, because loops play no role in hamiltonicity investigations. Thus, un- less otherwise mentioned, in Chapters 3 and 4, by a graph we always mean a finite simple digraph. In Chapter 3, for k = l = 1 we obtain a characterization of cycles among directed Toeplitz graphs, and another result similar to Theorem 10 in [13]. Directed Toeplitz graphs with s 1 = 1 (or t 1 = 1) are obviously traceable. If we ask moreover that s 2 = 2, we see that the hamiltonicity of T n 1, 2; t 1 depends upon the parity of t 1 and n. Further in the same Chapter, we require s 3 = 3 and succeed to prove the hamiltonicity of T n 1, 2, 3; t 1 for all t 1 and n. In Chapter 4 we present a few results on Toeplitz graphs with s 1 = t 1 = 1 and s 2 = 3. They will often depend upon the parity of n. Chapter 5 contains some concluding remarks.