Search or add a thesis

Advanced Search (Beta)
Home > Data base tool normalizer

Data base tool normalizer

Thesis Info

Author

Muhammad Sarfraz

Department

Department of Computer Science

Program

MS

Institute

International Islamic University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

1997

Thesis Completion Status

Completed

Subject

Computer Science

Language

English

Other

MA/MSc 005.74 MUD

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676723296890

Similar


Loading...

Similar Thesis

Showing 1 to 20 of 100 entries
TitleAuthorSupervisorDegreeInstitute
MS
International Islamic University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
BCS
COMSATS University Islamabad, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
BCS
COMSATS University Islamabad, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
BBA
International Islamic University, Islamabad, Pakistan
MBA
International Islamic University, Islamabad, Pakistan
BCS
International Islamic University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
BS
COMSATS University Islamabad, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
MS
International Islamic University, Islamabad, Pakistan
TitleAuthorSupervisorDegreeInstitute
Showing 1 to 20 of 100 entries

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

ارشاد ڈیروی تے عصری شعور

ارشادڈیروی تے عصری شعور

اجوکے سمے دیاں دیاں مشہور اصناف سخن وچوں غزل اک اجیہی صنف سخن اے ، جس دے وچ سب توں ود ھ طبع آزمائی ہو رہی اے ۔ایس صنف وچ نویں نویں تجربے ہو رہے نیں تے نویں سرنانویاں نوںایس صنف راہیں بیان کیتا جا رھا اے ۔غزل دا ہر شعر اپنی تھاں اک مکمل اکائی ہو ندا اے ۔۔اوہدے وچ شاعر اپنی فکر تخیل یاں جذبہ مکمل طور تے بیان کریندا اے ۔ایس پاروں کچھ نقاداں نے ایس نوں ’’منتشر الخیال ‘‘صنف آکھیا اے ۔(۱)کیوں جے ایہدے وچ نظم ونگوں خیالا ں دا ربط تے تسلسل نہیں ہو ندا۔ایس دے باوجود غزل دے سارے شعر قافیہ تے ردیف دے داخلی دھاگے نال اک دوجے نال جڑے ہو ندے نیں ۔ڈاکٹر وزیر آغا دا خیال اے :

’’غزل کا ہر شعر ایک ایسا جزو ہے جو غزل کا حصہ ہو نے کے باوجود اس سے جد ا بھی ہے ۔ہر شعر ایک الگ حیثیت کا حامل ہے لیکن اس کے باوجود وصف غزل کے دھاگے سے منسلک بھی ہیں ۔‘‘(۲)

غزل واسطے سرنانویاں دی کوئی پابندی نہیں ہو ندی ۔ایس لئی ایہدے وچ حسن تے عشق ،جوانی تے بڑھاپا ،زمین تے آسمان ،سماج تے معاشرہ ،ریاست تے سیاست ،علم تے فن یعنی ہر قسم دے خیالات وکھو وکھ شعر اں وچ بیان کیتے جا سکدے نیں ۔پر اوہناں ساریا نوں ایک دوجے نال جوڑ کے رکھن لئی اک مخصوص داخلی رنگ،مخصوص جذبے تے احساس دی لوڑ اے ۔انج تد ای ہو سکداے جدوں شاعر حیاتی دے سبھے خارجی منظراں نو ں اپنی ذات تے فکر دا حصہ بنا لوے ۔اوہناں نوں شعراں دے روپ وچ ڈھالدیاں ہویاں اوہ اپنی ذات توں وکھریاں نہ کرے ۔سگوں اپنی ہڈو ورتی بنا کے پیش کرے ۔شاعر غزل...

COMPARISON OF THE LEVEL OF BURNOUT AMONG THE ACADEMIC AND CLINICAL PHYSICAL THERAPISTS

Aims of Study: To compare the level of burnout among the academic and clinical physical therapists. Methodology: A cross sectional study was conducted from August 2019 to January 2020. Data was collected from physical therapists working in the universities and hospitals of Rawalpindi and Islamabad. Data was collected from 278 participants. Maslach burnout inventory scale was used to measure the level of burnout which was analyzed using SPSS statistics 21.  Results: The mean value of emotional exhaustion for clinical physical therapists was 20.02 ± 8.08 and for academic physical therapist was 18.6 ± 6.57 with significant p value (p˂0.05). The mean value for depersonalization for clinical physical therapists was 9.22 ± 5.17 and for academic 9.29 ± 5.07 with significant p value (p˂0.05). The mean value of personal accomplishment for clinical physical therapists and academic physical therapists was 35.43 ± 7.715 and 35.74 ± 6.49 respectively with non-significant p value (p˃0.05). Limitations and Future Implications: It was conducted for specific time period which not record the overall or yearly impact of burnout on participants. So time lapse and longitudinal study should be done. Originality: The clinical physical therapists have increased level of burnout than academic physical therapists. Conclusion: The clinical physical therapists have increased level of burnout than academic physical therapists.

Best Proximity Point Results in Fuzzy Metric Spaces

The aim of this research is to investigate some contractions and establish the existence results of single and multivalued mappings in frame work of some abstract space. Banach (1922) presented a fixed point theorem, namely Banach contraction theorem, which states that, a contraction mapping has a unique fixed point in a complete metric space. This theorem is widely applicable in proving the existence of solutions of functional equations under certain conditions. This theorem is based upon the iterative process, so it can be easily implemented on computer. This theorem was a revolution in fixed point theory. Later on , several generalizations of this theorem have been obtained. Fixed point results are widely studied in the framework of topological, metric and ordered oriented spaces. It is interesting to study that a nonlinear functional equation T(x) = x (where T is some linear or nonlinear operator defined on metric or fuzzy metric space) has either a solution or possess no solution. If the nonlinear functional equation has any solution, then it is interesting to find some algorithms which lead to an appropriate solution, but if nonlinear functional equation has no solution, then to try and find some approximate solution. The approximation, optimization and fixed point theory incorporate the main theme of nonlinear analysis. The best approximation theory is applicable in variety of problems arising in nonlinear functional analysis. Banach (1922) fixed point theorem is vastly applicable in proving the existence of solutions of functional equations under certain conditions. Many authors generalized Banach contraction principle in various directions. To address the question, if a nonlinear functional equation has no solution, it is recommended to approximate the solution which solves the optimization problem such that d(x, T x) is minimum. Ky Fan’s (Fan (1969)) best approximation result has been used when some nonlinear functional equations have no solution. In this thesis, best proximity point results in non-Archimedean fuzzy metric space are proved and some optimal best proximity point results are also obtained. These results provides the existence of optimal approximate solutions to some equations which have no solution. Further, fuzzy optimal coincidence point results for different proximal contractions in the framework of complete non-Archimedean fuzzy metric space are obtained. These results also holds in fuzzy metric spaces when some mild assumptions are added in the domain of involved mappings. In the next part of thesis, best proximity point results in a complete non-Archimedean fuzzy metric space with ordered structure have been discussed. Further, a class of multivalued mappings is introduced which satisfies Suzuki type generalized contractive condition in the framework of fuzzy metric spaces and some fixed point results are obtained for such kind of mappings. In next part of this thesis, Suzuki type contraction conditions are further generalized as Suzuki type F−contraction fuzzy mapping in ordered metric spaces. As an application, a common fixed point result for hybrid pair of single and multivalued mappings, the existence and uniqueness of common bounded solution of functional equations arising in dynamic programming are obtained. The obtained results generalize and extend various results in the existing literature. In each chapter, some examples are provided, which shows the validity of the results along with couple of remarks about the comparison of obtained results with the existing ones in the literature.