Search or add a thesis

Advanced Search (Beta)
Home > Management information system of Thuraya satellite communications company

Management information system of Thuraya satellite communications company

Thesis Info

Author

Sauood-ur-Rauf, Muhammad

Department

Department of Computer Science

Program

BCS

Institute

International Islamic University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2002

Thesis Completion Status

Completed

Subject

Computer Science

Language

English

Other

BS 384.6584038 SAM

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676723559253

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

اتفاق وچ برکت

اتفاق وچ برکت

اک دفعہ دی گل اے کہ اک پنڈ وچ اک بہت غریب آدمی رہندا سی۔ اوس دے تن پتر سن۔ اوہدے پتر بہت فرمانبردار سن۔ اوہناں دا پیو اوہناں نوں جو کجھ آکھدا اوہ کردے سن۔ اک دن اوہناں کول کھاون نوں کجھ وی نئیں سی۔ اوہناں دے والد نے آکھیا۔ چلو جنگل چلدے آں۔ کجھ جنگلی پھل اکٹھے کر دے آں تے کجھ شکار، اوہناں دے والد نے اپنے وڈے منڈے نوں آکھیا کہ توں جنگل وچ جا کے لکڑیاں اکٹھیاں کر کے لیا۔ دوجے منڈے نوں آکھیا کہ توں اگ لے کے آ۔ جد کہ تیجے منڈے نوں پانی لین لئی گھل دتا۔ اوہ تینوں چلے گئے تے آپ اک درخت تھلے آ بیٹھا۔

اوس درخت اتے ہنساں دا اک جوڑا رہندا سی جو ایہہ سارا کجھ ویکھ رہیا سی۔ ہنس اوہدے کولوں پچھداد اے کہ توں ایہناں چیزاں دا کیہ کرنا ایں۔ تیرے کول پکاون لئی کوئی چیز نہیں۔ ایہہ گل سن کے اوہ جواب دیندا اے کہ اج تہانوں پکانا ایں۔ ہنس آکھدا اے کہ ساہنوں نہ پکا۔ تینوں اک خزانے بارے دسدے آں۔ ایہہ گل سن کے اوہ خوش ہو جاندا اے۔ ہنس آکھدا اے کہ ایس درخت دے تھلے اک بہت وڈا خزانہ دفن اے۔ تسی اوہ کڈھ کے اپنی ضرورت پوری کر لو۔ اوہ بندہ اپنے تنے پتراں نال خزانہ کڈھ دا اے تے بہت سارے پیسے، ہیرے، چاندی تے سونا لے کے گھر آندا اے۔

گھر آ کے اوہ اپنے منڈے نوں آکھدا اے کہ گوانڈھیاں کولوں تکڑی منگ کے لیا تاں جے خزانے نوں تولیا جا سکے۔ گوانڈھی بڑے حیران ہوندے نیں۔ اوہ ویکھنا چاہندے نیں کہ تکڑی وچ کیہ تولیا جا رہیا اے؟ اوہ تکڑی دے تھلے گوند لاہ دیندے نیں۔ خزانہ تولدے ہوئے کجھ...

سکھ دھرم پر اسلامی تعلیمات کے اثرات کا علمی جائزہ

Sikhism is one of the Non Semitic religions founded by Guru Nanak, belonged to a Hindu family and was born in 1469 A.D. This religion is popular in India and Pakistan. Some inhuman customs in Hinduism like caste system, the custom of Satty (burning out of wife with the dead body of husband), monopoly of Brāchman etc. Compelled him to introduce a new religion based on equality and justice. As identified from the life style of the founder of Sikhism and his followers, he is deeply impressed with Islamic teachings. Their habits and customs reflect an Islamic picture. Guru Nanak was a monotheist and was against the worship of idols. He believed in equality and acknowledged the prophet Muhammad (S.A.W), as a role model for human beings. This article is aiming to explain the teachings of Sikhism derived from Islam.

Modeling of the Nanofluids Thin Film Flow Problems over Stretching Surfaces With Analytical and Numerical Approach

In this work we concentrated on the modeling of the nanofluid thin film flow past a stretching surface with different physical parameters. These parameters of interest are discussed in brief in each chapter with its physical significance with solution techniques. Chapter one is an overview of the basic definitions and models. Classification of the fluid is presented with diagrams and some different physical phenomena are sketched with figures. The basic model equations for the description of the physical system are derived with its physical significance. A comprehensive note is presented on the nanofluid model for the thermal conductivity in the enhancement of heat. Hall effect is discussed with its mathematical relation to the momentum equation. Some basic models for non-Newtonian fluids are also presented. In conclusion to this chapter, the basic scheme of the solution technique is discussed. In chapter two we focus on the literature present for the next four chapters. Nanofluids are discussed in detail and work are done on the nanofluids is described over stretching surfaces. MHD flow with Hall effect is encircled with its mechanism and literature survey. Finally the concept of boundary-layer is presented for nanofluid from its literature point of view on stretching surfaces. In chapter three, thin film flow is modeled with the help of the Reiner-Philippoff fluid model. The physical problem is sketched in the form of the mathematical model which is further transformed into an ODEs system with its boundary restrictions. The effects of Brownian motion and thermophoresis are studied over the Reiner-Philippoff fluid. The transformed model is solved by using HAM. The convergence of the implemented technique is presented in the form of tables. The impact of Nusselt number, Sherwood number and skin friction is presented over these profiles. Tables show the impact and efficiency of our implemented technique. In chapter four, different base fluids are used for viscous Titania nanofluid flow. A 3D flow of an electrically conducting fluid is considered over an inclined rotating surface. A magnetic filed id applied to the surface of the sheet. A similar approach we have used in chapter 3 is implemented. The reduced model is solved with the help of the numerical technique. The implemented technique is compared with the HAM results in the form of tables. The convergence of the technique is also presented by the graphs. The impact of different physical parameters are discussed over various state variables. In chapter five, the second grade viscoelastic MHD nanofluid flow past a vertical stretching sheet is assumed. The physical problem contains the entropy generation, mass transfer and heat transfer in the fluid flow. The gradient in concentration, thermophoresis and Brownian effects are considered in the flow. A physical problem is modeled and transformed with help of new dimensionless variables together with the boundary restrictions and is further solved with the help of HAM. The implemented technique convergence is shown by tables. The effect of various physical parameters is observed and analyzed over different profiles. In chapter six, a magnetic field is applied to a three dimensional geometry with a rotating disk over which a steady and viscous nanofluid flow is considered. The analysis of the fluid flow is carried out with consideration of the Casson fluid model. The fluid assumed to be electrically conducting. To reduce the complexity of the model, the system is transformed into less complex model by using the newly introduced dimensionless variables with its boundary restrictions. A numerical technique in comparison with HAM is used for the problem solution. Some physical important parameters are described in detail and its impact is analyzed over different state variable profiles. A comparative tabular survey for the numerical technique with HAM is presented. This tabular survey shows the reliability of our technique. Finally, in the last two chapters, the results obtained, and the papers published from this work is presented.