پروفیسر عبدالمغنی کی رحلت
۵؍ ستمبر کو اردو کے ممتاز ادیب و نقاد پروفیسر عبدالمغنی اپنے مالک حقیقی سے جاملے، ان کے دماغ پر فالج کا حملہ ہوا تھا، علاج کے لیے پٹنہ کے ایک اسپتال میں داخل کیے گئے تھے، وہیں صبح سات بجے داعی اجل کا پیغام آگیا، اناﷲ وانا الیہ راجعون۔
وہ صوبہ بہار کے ضلع اورنگ آباد کے ایک دینی گھر انے میں ۴؍ جنوری ۱۹۳۶ء کو پیدا ہوئے تھے، ان کے والد ماجد مولانا عبدالرؤف اورنگ آبادی ندوی ایک ممتاز عالم تھے جن کے مضامین معارف میں چھپتے تھے اور ایک بھائی پروفیسر اقبال حسین مظفرپور یونیورسٹی کے شعبہ اردو کے صدر رہ چکے ہیں، عبدالمغنی صاحب نے ابتدائی تعلیم اورنگ آباد کے مدرسہ اسلامیہ میں حاصل کی تھی اور یہیں غالباً انہوں نے قرآن مجید بھی حفظ کیا تھا، عربی درسیات کی تکمیل مدرسہ شمس الہدیٰ پٹنہ میں کی تھی، پھر جدید تعلیم کے لیے انگریزی اسکولوں اور کالجوں کا رخ کیا، فراغت کے بعد پٹنہ یونیورسٹی کے کسی کالج میں انگریزی کے استاد ہوگئے، وہ ایک اچھے اور نیک نام استاد تھے، انگریزی میں چند کتابیں بھی لکھیں مگر ان کی اصل تصنیفی زبان اردو تھی، ان کا شمار اردو کے زود نویس اہل قلم اور مصنفین میں ہوتا ہے وہ قلم برداشتہ لکھتے تھے۔
مرحوم کو اپنی مادری زبان اردو سے عشق تھا، علاوہ کثرت تصنیف کے وہ اردو تحریک کے بڑے سرگرم مجاہد بلکہ بہار میں اردو تحریک کے صف اول کے قائد تھے اور مدت دراز تک انجمن ترقی اردو کی بہار شاخ کے صدر تھے، ان کی عملی قوت اور تنظیمی صلاحیت نے بہار کی انجمن ترقی اردو کو بہت متحرک و فعال اور دوسری ریاستی انجمنوں سے زیادہ کارگزار بنا دیا تھا، عبدالمغنی صاحب کی سعی و جاں فشانی سے ۱۹۸۰ء میں سب سے پہلے...
Background and Aim: To evaluate the association of pectoralis minor muscle length and the shoulder range of motion with and without shoulder pain.
Methodology: A sample of 214 participants with and without shoulder pain were enrolled in an analytical cross sectional study at Institute of physical medicine and rehabilitation, Dow University of health sciences, Karachi. Questionnaire was provided to all participants after taking consent. Individuals were categorized into two equal groups i.e. one with and the other without pain). Shoulder active ranges were measured with universal goniometer and pectoralis minor length with measuring tape. Statistical Package of Social Sciences version 21 was used for data analysis. The descriptive variables were assessed for frequencies and percentages. Continuous variables were shown with mean and standard deviations and were correlated with bivariate correlation test. Considered significant was 0.05 p value.
Results: Females were 176(82.2%) and males were 38 (17.8%). Mean ± SD of age, weight, height, and BMI were 26.82 ±7.50, 58.45 ±12.11, 160.59 ± 12.43, and 22.18 ±3.78 respectively. The pain intensity negatively correlated with shoulder range of motions (rs = -0.307 to -0.775, p< 0.05) except medial rotation. Significant difference (p< 0.05) is found for length of pectoralis minor and range of motion between groups. There was also weak positive correlation between pectoralis minor index and shoulder lateral rotation (rs =0.215; p = 0.003).
Conclusion: The shoulder pain affects shoulder joint range of motion and pectoralis minor length. Decreased pectoralis minor muscle length accompanies limited shoulder range of motion except, medial rotation.
Wireless Sensor Networks (WSNs) are becoming ubiquitous in everyday life due to their applications in weather forecasting, surveillance, implantable sensors for health monitoring, Internet of Things (IoT) and other plethora of applications. WSN is equipped with hundreds and thousands of small sensor nodes for monitoring and surveillance of a targeted region. As the size of a sensor node decreases, critical issues such as limited energy, computation time and limited memory become even more challenging. In such case, network lifetime mainly depends on efficient use of available resources. Organizing nearby nodes into clusters make it convenient to manage each cluster as well as the overall network efficiently. WSN empower applications for critical decision-making through collaborative computing, communication and distributed sensing. However, they face several challenges due to their peculiar use in a wide variety of applications. One of the inherent challenges with any battery operated sensor is the efficient consumption of energy and its effect on network lifetime. The topology management becomes very important as nodes are often distributed randomly that leads to uneven distribution of load. In addition, cluster head selection plays an important role in enhancing network lifetime and improving energy efficiency. Inappropriate selection of Cluster Head (CH) may lead to high network overheads resulting in early battery depletion affecting overall network lifetime. The sensor node selected as CH is responsible for both inter and intra cluster communication, therefore, it consumes more energy as compared to other cluster nodes. Thus, it is very important to select an optimal node as CH and to efficiently rotate the CH role periodically to avoid network partitioning problem. In this research work, a novel Grid based Hybrid Network Deployment (GHND) approach for WSN is proposed to ensure energy efficiency and load balancing. The new merge and split technique that evenly distributes the nodes across the network for maximizing energy efficiency and network lifetime. The proposed method is compared with existing state-of-the-art energy efficient cluster and grid-based techniques on the basis of energy efficiency, scalability and network lifetime. An extensive set of simulations and experiments reveal that the proposed method outperforms existing state of the art techniques such as LEACH and PEGASIS in terms of load balancing, network lifetime, and energy consumption. Moreover, the cluster head selection problem is resolved with a multi-criteria decision modeling using the Analytical Network Process (ANP). A mathematical framework is developed that takes into account various parameters such as residual energy level, distance from neighboring nodes, centroid distance, number of times a nodes has been cluster head and whether a node is merged or not, for efficient selection of cluster head. In the ANP model, these mentioned parameters are pairwise compared to obtain the weights through the supermatrix. The supermatrix is transformed in to a limit matrix that reports priority weights for all criteria parameters. These priority weights are further used to optimize the criteria list for efficient cluster head selection by eliminating low weight parameters ultimately minimizing computational complexity of the ANP process. The sensitivity analysis of the proposed ANP based scheme has been carried out to check the stability of parameters and relative importance in CH selection process.