Search or add a thesis

Advanced Search (Beta)
Home > Civil military relations pertaining to PMLN 2013-2016

Civil military relations pertaining to PMLN 2013-2016

Thesis Info

Author

Uzma Yasmeen

Supervisor

Sadaf Farooq

Department

Department of Politics and International Relations

Program

MS

Institute

International Islamic University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2017

Thesis Completion Status

Completed

Page

vii, 73

Subject

Politics and International Relations

Language

English

Other

MS 322.5 UZC

Added

2021-02-17 19:49:13

Modified

2023-02-17 21:08:06

ARI ID

1676723758831

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

علامہ راشد الخیری

علامہ راشد الخیری
ہم نے یہ خبر بھی دلی رنج و افسوس سے سنی کہ ۳؍ فروری کو مولانا راشد الخیری نے اس دار فانی کو خیر باد کہا اور ہندوستان کا طبقۂ نسواں اپنے ایک بڑے معلم اور اپنے حقوق کے ایک بڑے محافظ سے، اور ہندوستانی زبان اپنے ایک بڑے محسن کی خدمات سے ہمیشہ کے لئے محروم ہوگئی، مرحوم شمس العلماء ڈپٹی نذیر احمد کے عزیز قریب اور طرزِ تحریر میں ابتداً ان کے پیرو تھے، مرحوم نے اپنی ادبی زندگی رسالہ مخزن کی ادارت سے وابستہ ہوکر شروع کی، پھر ۲۷ سال گزرے کہ عصمت کے نام سے ایک زنانہ رسالہ جاری کیا، اور ساری عمر طبقہ نسواں میں بیداری پھیلانے اور انہیں تعلیم و تربیت کے زیور سے آراستہ کرنے میں گزاردی، ہندوستان کے طبقۂ نسواں کو بیدار کرنے کی خدمت دو بزرگوں شمس العلماء مولوی ممتاز علی (تہذیب نسواں) اور مولانا راشد الخیری (عصمت) نے انجام دی افسوس کہ یہ دونوں ۶ ماہ کے اندر ہم سے جدا ہوگئے، مولانا راشد الخیری کی تحریک نسواں کا یہ امتیازی وصف تھا کہ وہ حقوق نسواں کے سب سے بڑے حامی کے ساتھ شریعت اسلامی کی حدود کا پاس نگاہ میں رکھتے تھے اور حقوق نسواں کے حامیوں کے اس گروہ کے سب سے بڑے مخالف تھے جو عورتوں کو مغرب کی کورانہ تقلید کی طرف لے جانے والا ہے، وہ ہندوستانی زبان کے مشہور ادیب، اور صاحب طرز انشا پرداز تھے، انہیں لال قلعہ کی پاکیزہ زبان لکھنے پر قدرت حاصل تھی، وہ انسانی درد و مصیبت اور معاشرتی زندگی کا خاکہ کھینچنے میں کمال رکھتے تھے، ان کی صبح زندگی و شام زندگی، ڈپٹی نذیر احمد کی توبۃ النصوح وغیرہ کے پہلو میں رکھے جانے کے قابل ہیں، اور بلاشبہ ان کی کتابیں پڑھ کر آنسوؤں کا ضبط کرلینا دشوار ہے،...

An Analytical Study of Liquidity and Assets Management Ratio of Selected Automobile Company in India

The primary objective of this research is to assess the liquidity and asset management positions of selected vehicle manufacturers and to give recommendations for improving their liquidity and asset management positions. The current research spans five years, from 2015-2016 to 2019-2020. Three organizations were chosen for this research, and five ratios were calculated: the current ratio, the liquidity ratio, the working capital turnover ratio, the total asset turnover ratio, and the fixed asset turnover ratio. ANOVA was employed to test the hypothesis. The research's principal results reveal that there is no statistically significant variation in the different asset management and liquidity ratios of chosen vehicle businesses during the study period. According to data interpretation, the comparison of all the selected three automobile industry's ratios indicates that Maruti Suzuki Ltd. Is in a better position than the other selected automobile companies, as its average of the selected ratios is 12.85, which is higher than the other selected automobile companies. Thus, Maruti Suzuki Ltd. Outperforms the other automotive manufacturers.

Membrane Module Design & Analysis for Gas Separation

The expected worldwide market for membrane separation technologies is estimated to be $16 billion by the year 2017 because of extensive acceptance of the membrane technology in several end-user markets. With the increase in demand for high-quality products, environmental concerns, stringent regulations and exhausting natural resources, membrane separation technologies are predicted to see substantial development in the future. The scope of membrane technology likely is expected to be interesting as new membrane materials, innovations and processes make their way to the marketplace. The recent development in industrial applications of membrane gas separation is: to develop robust membranes, which show higher separation capacity, and are consistent and durable for specific applications. Process simulation is a method to optimize the design and operating conditions in the process. A process configuration and optimum operating conditions result in enhanced separation performance and are less expensive. In addition, with the growth of new process models, new membrane applications are arising. This study focuses on emerging models that can be used to bring improvement in the operation and design of membrane gas separation processes. Numerical models for the better performance of gas separation with high permeation were developed and verified. The pressure gradient on both sides of the membrane in different flow patterns has been considered i.e. co-current, cross and counter current. The numerical models are useful as they need least computational effort and deliver better solution stability. The robustness and the predictions of the numerical models were verified with experimental data for different membrane systems with different flow patterns. The numerical models were applied to several case studies to investigate the performance of different membrane module configurations. The research shows that the new numerical models can effectively handle the high permeate membrane problems with various flow configurations. It is a common perception that working at higher pressures permeates more gasses, and hence, occasionally the membrane module is analyzed or characterized at lower pressures to save gas utilization. It is also believed that membrane ability of gas separation declines at higher feed pressures. The obvious and key permeances of different grasses for different membranes were assessed from numerical analysis based pure gas permeation experiments reported in the ii literature. It was found that the membrane performs near to its real separation capability if it is worked at high feed pressures. The effect of pressure on the membrane performance is minimized under some special conditions. One of the most powerful features of the ASPEN HYSYS program enables users to add additional unit operations to the program through Extensibility. Using this capability, the ASPEN HYSYS could be customized for the simulations to match specific operating conditions. The built in unit operation of membrane is not available in ASPEN HYSYS. In this research, a membrane extension has been developed in ASPEN HYSYS. Developing and implementing the successful Extensions for ASPEN HYSYS requires a good understanding of the ASPEN HYSYS program, an object-oriented programming language (Visual Basic), and the purpose of the Extension. This research will help combine the knowledge of all three areas and allow us to create useful and powerful extensions for the ASPEN HYSYS program. This extension allows ASPEN HYSYS to simulate the industry specific membrane based separation processes. Computational fluid dynamics (CFD) simulations were carried out for the separation of gasses using membranes. This CFD code was used to examine the flow profile for gas separation in a membrane. To the best of our knowledge, the availability of CFD simulation on membrane gas separation is found to be limited, hence, it was attempted in the present study. The aim of this research is to use commercial CFD simulation package ANSYS FLUENT to predict flow conditions and gas permeation. For CFD calculations, the commercial solver based on finite volume method (FVM) has been used and the mass transfer through the membrane has been modeled by user-defined functions (UDFs). Two key aspects are significant for the design of membrane modules used for gas permeation. These aspects include flow distribution and concentration polarization. The later causes a reduced driving force, considerably affecting membrane performance. A uniform flow distribution will ensure that the complete membrane area is utilized. In order to reduce the influence of concentration polarization and to ensure an even flow distribution, baffles located between two membrane surfaces or plates containing flow channels are employed. Turbulence model has been integrated into the solution of incompressible flow equations.