Search or add a thesis

Advanced Search (Beta)
Home > SIMS sales and inventory management system

SIMS sales and inventory management system

Thesis Info

Author

Abroo Mehboob

Supervisor

Zakia Jalil

Department

Department of Computer Science and Software Engineering

Program

BS

Institute

International Islamic University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2011

Thesis Completion Status

Completed

Page

viii, 86

Subject

Computer Science

Language

English

Other

BS 005.74 ABS

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676723850742

Similar


Loading...

Similar Thesis

Showing 1 to 20 of 100 entries
TitleAuthorSupervisorDegreeInstitute
BS
International Islamic University, Islamabad, Pakistan
MBA
International Islamic University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
BCS
International Islamic University, Islamabad, Pakistan
BBA
International Islamic University, Islamabad, Pakistan
MS
International Islamic University, Islamabad, Pakistan
BCS
International Islamic University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
University of Engineering and Technology, Lahore, Pakistan
PGD
Quaid-i-Azam University, Islamabad, Pakistan
BS
International Islamic University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
BCS
COMSATS University Islamabad, Islamabad, Pakistan
BS
International Islamic University, Islamabad, Pakistan
MS
International Islamic University, Islamabad, Pakistan
BSc
University of Management and Technology, Lahore, Pakistan
BCS
International Islamic University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
TitleAuthorSupervisorDegreeInstitute
Showing 1 to 20 of 100 entries

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

مولوی عبدالحق

بابائے اردو مولوی عبدالحق
بابائے اردو مولوی عبدالحق صاحب کی وفات دنیائے اردو کا سب سے بڑا حادثہ ہے، علمی و ادبی حیثیت سے اردو کے خدمت گذاروں کی کمی نہیں ہے، لیکن جس نے ہر پہلو سے اس کی خدمت کی اور اس کے لیے اپنی پوری زندگی وقف کردی اور اس کی راہ میں اپنا تن من دھن سب نثار کردیا، وہ تنہا مولوی عبدالحق کی ذات تھی، مولوی صاحب مرحوم سے پہلے اردو کی خدمت کا دائرہ محض اردو کی انفرادی علمی و ادبی تصانیف تک محدود تھا، اجتماعی کوشش اور تاریخی لسانی اور سیاسی حیثیت سے اس کی خدمت کی صرف بنیاد پڑی تھی، مولوی صاحب نے اس کا عظیم الشان قصر تعمیر کردیا، اور اردو کی خدمت کی ایک عام لگن پیدا کردی، ان کی خدمات اردو کی تاریخ میں ناقابل فراموش ہیں، اور جب تک اردو زبان باقی ہے ان کا نام بھی زندہ و پائندہ رہے گا۔
ان سے پہلے انجمن ترقی اردو کا کوئی وجود نہ تھا، مسلم ایجوکیشنل کانفرنس کا ایک شعبہ اردو کی خدمات بھی تھا، وہ بھی برائے نام اس کی کوئی عملی حیثیت نہ تھی، ۱۹۱۲؁ء میں جب مولوی صاحب اس شعبہ کے سکریٹری مقرر ہوئے تو اس ’’نام‘‘ کو اپنے ساتھ اورنگ آباد لے گئے اور اپنی ان تھک کوششوں سے چند دنوں میں اس کو ایک آل انڈیا ادارہ انجمن ترقی اردو بنا دیا، اس نے اردو زبان کی جو گوناگوں خدمات انجام دیں ہیں، ان سے ہر صاحب علم واقف ہے، حقیقت یہ ہے کہ اگر انجمن ترقی اردو نہ ہوتی تو اردو کو علمی زبان بننے میں بڑی دیر لگتی۔
مولوی صاحب کو اردو سے والہانہ عشق تھا، انہوں نے اس کو اپنا اوڑھنا بچھونا بنالیا تھا، ان کو سوتے جاگتے، اٹھتے بیٹھتے، اسی کی دھن رہتی تھی، اور ان...

حقِ انتفاع و انتفاعی ملکیت: ایک فقہی تحقیقی جائزہ

There is quite difference between ownership and right of use in other words usufruct, at present this term is widely used in Islamic financial institutions for beneficial ownership. But the use of this term is entirely changed from western law and Islamic law. Particularly in Islamic law, legality of a product or things depends on its objectives. In this article it has been discussed in detail in the light of different school of thoughts of Islamic jurisprudence.  

Customer Churn Prediction in Telecommunication Using Computational Intelligence

Telecommunication industry has grown rapidly during the last decade. The number of cellular subscribers is approaching about 96% of total population of the world. In such a fierce competition, telecom service providers are facing saturated markets with little room for penetration. Therefore, telecom companies are focusing more on customer retention, which is considered cost effective as compared to adding new customers. Moreover, customer retention is more economical as it does not involve any additional marketing expense. Long term customers are also considered as easier to serve, contribute more toward stable profitability, and introduce new referrals as well. On the other hand, new customers are hard to be attracted in competitive markets and take little longer for establishing loyalties with the new service providers. Therefore, telecom industry requires a reliable churn prediction system, which accurately identifies the customers who are about to switch over to another service provider. The role of customer churn prediction system has become pivotal in retaining customers expected to churn by luring them with the improved service packages. This preceding knowledge of customers‟ churning would enable service providers to avoid sizeable revenue losses. Consequently for churn prediction, researchers have investigated many interesting data mining techniques that can meet the specific demands of telecom industry. However, the telecom churn prediction is still a challenging tak because of the the big size, imbalanced class distribution, and high dimensionality of telecom datasets. The main focus of this thesis is to identify discriminative feature extraction techniques and effective sampling methods to cater for the enormous nature of telecom datasets. Additionally, investigations are made to develop a churn prediction system with better classification and interpreting capabilities. This thesis makes the following contributions in the area of telecom churn prediction: 1) Analysis of minimum redundancy and maximum relevance (mRMR) method for extracting relevant and meaningful features, 2) Exploiting Genetic Algorithm based wrapper method to remove any redundant features from selected features, 3) Analysis of PSO xvi based intelligent sampling technique and its comparison to conventional undersampling techniques, 4) Constructing efficient churn prediction systems using computational intelligence based ensemble classification approaches (CP-MRF, Chr-mRF FEW-ChrP), 5) Employing novel GP-AdaBoost based ensemble classifier to develop an efficient churn prediction system with the additional capability of identifying factors responsible for churning, 6) Attaining highest churn prediction performance of 0.862 AUC and 0.910 AUC on Orange and Cell2Cell telecom datasets, respectively. 7) Extracting 47 useful features from 260 original features of Orange dataset and 35 features from 76 original features of Cell2Cell dataset. In short, under this research work extensive simulations are performed to examine the prediction performance of the proposed churn prediction systems distinguishing churners from non-churners.