Search or add a thesis

Advanced Search (Beta)
Home > Workplace ostracism and deviant behaviors:the mediating role of organizational silence

Workplace ostracism and deviant behaviors:the mediating role of organizational silence

Thesis Info

Author

Nadia Batool

Supervisor

Tasneem Fatima

Department

Department of Management

Program

MS

Institute

International Islamic University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2015

Thesis Completion Status

Completed

Page

x, 82

Subject

Management

Language

English

Other

MS 302.542 NAW

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676723926821

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

ارادھنا

ارادھنا

اے ربِ رحیم و کریم۔۔۔!
اِن اللہ علی کلِ شیئٍ قدیر!
میں خانہ بدوش ، سیلانی ، آوارہ!
تیری زمیں پر۔۔۔تیرے موسموں کے ساتھ محوِ سفر ہوں
تو کریم۔۔۔سبز موسم کا لباس پہن کر!
تو رحیم۔۔۔خوشبو کی طرح روح میں اُتر کر!
میرے تڑپتے سسکتے دل کو۔۔۔!
اپنی آغوش میں لے کر۔۔۔اپنے ہاتھوں سے سہلاتا ہے
دشتِ بیاباں میں دل فریب آہو بلا کر !
ستاروں کی سرگوشیوں میں!
نرم ٹھنڈی ریت پر سلا کر!
میرے خیالوں کے، حوالوں کی بدکتی ناقہ کو وحشتوں سے نجات دلاتا ہے
میرے تڑپتے سسکتے دل کو!
اپنی آغوش میں لے کر ، اپنے ہاتھوں سے سہلاتا ہے
تو ہی خالق۔۔۔ تو ہی مالک۔۔۔!
تیری کائنات میں اسرار جبرائیل ؑ کے ثبوت موجود ہیں
نیاز الہام اور قلب نامہ بری کے!
چراغ نور کی روشنی میں مظہر خلیلؑ کے ثبوت موجود ہیں
تو مجھے بزم رقص سے۔۔۔!
کوہ قبیس کی طرف لسان شعور کے لہجے میں بلاتا ہے
مسافتوں کے مارے دل کو!
اپنی آغوش میں لے کر، اپنے ہاتھوں سے سہلاتا ہے
تیری وجہ سے
لوح و قلم کو بھی ۔۔۔اپنے ہونے کا یقین ہے
تو ہی ’’وھو علی کل شی ئٍ قدیر۔۔۔وھو علی بِکل شی ئٍ علیم‘‘ ہے
صبح و شام میرے ارادوں کو۔۔۔تو اپنی پہچان کرواتا ہے
مسافتوں کے مارے دل کو!
اپنی آغوش میں لے کر ۔۔۔اپنے ہاتھوں سے سہلاتا ہے

السلام اساس الاسلام

This article deals with a very important and basic feature of Islām on whose foundation the whole façade of Islām is erected, i. E., Peace. If we study the Quranic injunctions, the sayings of the Holy Prophet Muḥammad (r) and his kind actions i. E. His Sunnah, it becomes quite obvious that our topic of research is the top most concern of al-Sharī’ah, because peace is the foremost attribute of Islām. Islām means to prevail peace not only in the lives of the people in this world, but in the hereafter, too. In this research paper, the author has done his level best to prove that peace and solidarity play an important role in all the spheres and walks of life. Islām emphasizes it the most. Islamic teachings regarding peace include an individual’s life affairs, as well as the national and the international relations. We notice that all actions taken by the holy Prophet (r) meant to spread peace among the Muslims and the non-Muslims. The Holy Prophet (r) was explicitly declared as ‘Raḥmah li’l-‘Ālamīn’ (A mercy for all the worlds) by Almighty Allāh. We need to highlight and follow his sublime example to let the Muslims and the rest of the world know what Islām actually stands for; in a single word, it is just PEACE!

Rician Noise Removal in Mr Images

This research work addresses a major denoising problem in Magnetic Resonance (MR) Images. Magnetic Resonance Imaging (MRI) is a powerful and e ective di- agnostic tool in basic research, clinical investigation, and disease diagnosis since it provides both chemical and physiological information about the tissue. MR Images are a ected by Rician noise during acquisition phase which decreases the image quality, image analysis and becomes di cult to diagnose it accurately. This thesis is an attempt to suppress low and high categories of Rician noise from MR data in such a manner to enhance the diagnostically relevant image content. Supervised and unsupervisedltering techniques are applied to suppress the Rician noise hence improving its quality for diagnostic process. A new supervisedltering model, based on genetic programming (GP), is proposed that evolves an optimal composite mor- phological supervisedlter (FOCMSF ) by combining the gray-scale mathematical morphological operators. (FOCMSF ) is evolved through evaluating thetness of sev- eral individuals over certain number of generations. The proposed method does not need any prior information about the noise variance. In the domain of unsupervisedltering, three techniques are proposed. These are collaborative techniques based on statistical and fuzzy logic. Fuzzy similarity based non local meanslter (FSNLM) is designed to non-locally search out similar and non-similar regions of a noisy pixel. Fuzzy weights are assigned to these regions on the base of similarity. Then the noisy pixel is replaced with the fuzzy weighted average of these regions. Another hybridlter is proposed that combines FSNLM and local order statisticallters to suppress Rician noise. This hybridlter uses the strengths of non-local and locallters and adaptively calculates the fuzzy weighted estimation of the noisy pixels. Another non local fuzzy weighted Enhanced LMMSE (Linear Minimum Mean Square Estimator) is designed. The aim of this approach is to handle adaptively the low and high levels of variation of Rician noise and to estimate a closed-form of Rician distributed signal. It estimates the noise free pixel value based on similarity of the non-local neighborhood pixels around a window of certain prede ned radius. Similarity is computed using fuzzy logic approach which is served as fuzzy weights in enhanced LMMSE module for accurate estimation of noise free pixel value. The proposed schemes handle the problem with better accuracy than several well knownltering schemes NLM, LMMSE, Wavelet based techniques etc. and therefore can be considered as original contribution of this research work. The pro- posed schemes handle the problem of Rician noise at low and high noise variances on smooth as well as detailed regions where existing methods fail due to multifar- ious nature of this noise. The improved performance of the developedlters are investigated using the standard MRI dataset and its performance is compared with previously proposed state-of-the art methods. Detailed experimentation has been performed using simulated and real datasets based on well known quantitative mea- sures. Comparative analysis demonstrates the superiority of the proposed schemes over the existing techniques.