شہزادے دے تن دوست
پرانے وقتاں دی گل اے کہ کسے ملک اتے اک بادشاہ حکومت کردا سی۔ اوس دے تن پتر تے اک دھی سی۔ دو پتر اوس دے بڑے فرمانبردار سن۔ اپنے پیو دی ہر گل مندے تے پوری محنت نال اوہناںنوں جو کم دتا جاندا اوہ کردے سن۔ ایس وجہ کر کے بادشاہ دونواں پتر نوں بہت پیار کر دا سی۔ بادشاہ دا تیجا پتر انتہائی نکما تے کاہل سی۔ کسے کم وچ دھیان نہ لیندا۔ سارا دن شکار کھیڈ دا تے روٹی کھا کے سوں رہندا۔ بادشاہ نے ہر طرح کوشش کیتی کہ اوہ کم وچ دھیان دیوے۔ پر اوہدی ہر کوشش ناکام رہی۔ تنگ آ کے اوس نے اوہنوں محل وچوں کڈھ دتا۔
ہن اوہ مایوسی دے عالم وچ ان ڈٹھی منزل ول ٹرویندا اے۔ رستے وچ اوس نوں اوہدا اک سجن ملدا اے۔ اوس دے پچھن تے شہزادہ اوس نوں دسدا اے کہ اوہدے پیو نے اوہنوں گھروں کڈھ دتا اے۔ اوہ آکھدا اے کہ میں وی تیرے نال چلدا آں۔ شہزادے نے اوہنوں پچھیا کہ توں کیہ کرسکدا ایں؟ اوہنے جواب دتا کہ میں ادھ اسمان وچوں تیر دا نشانہ لاہ کے کوئی وی شے دھرتی اتے سٹ سکدا آں۔ شہزادہ اوہنوں اپنے نال جاون دی اجازت دے دیندا اے۔
جدوں اوہ دونویں اگانہہ ٹرے جاندے نیں تاں اوہناں نوں اک ہور بندہ ملدا اے۔ اوہدے پچھن تے شہزادہ دسدا اے کہ اوہدے پیو نے اوہنوں گھروں کڈھ دتا اے۔ ہن میں اپنے ایس دوست نال روزی دی تلاش وچ جا رہیا آں۔ ایس شخص اک لت توں معذور ہوندا اے۔ اوہ آکھدا اے کہ شہزادہ سلامت مینوں وی نال لے چلو۔ شہزادہ اوس کولوں پچھدا اے کہ توں کیہ کر سکدا ایں؟ اوہ آکھدا اے کہ میں ڈیڑھ منٹ وچ...
Misunderstanding of Westerner about Islam. Islam originates from the word "Salam" which means peace, submission and tolerance. Islam has never preached for intolerance, hatred and violence. It has despised violence and bloodshed and having no place for extremism. Islam is a religion of moderation rather than extremism. The Holy Quran enshrines benign treatment and attitude even towards non-believers, who are residing in Muslim state and to guarantee them all their basic rights of life and property. It negates hatred and fundamentalism and stands for universality. There arises question that how this situation has been muddled and the real soul of Islam is distorted? How incendiary norms have been infested in federally administered tribal areas of Pakistan? There is a need for implementation of anti-terror laws and to condemn terrorism in all its manifestations.
Alzheimer’s disease is a multifactorial and progressive neurodegenerative disorder that affects an individual’s memory and cognitive skills. It is a major cause of death around the globe and according to 2015 Alzheimer’s association report, the death percentage has increased to 71% since year 2000. The clinical symptoms of the disease appear at a stage when the loss has become irreversible. Modern brain imaging techniques have enabled us to non-invasively visualize the internal structures of the brain. Scientists believe that structural and functional changes due to Alzheimer’s disease begin in the brain more than 20 years before any clinical symptoms are observed. Early detection of the disease is crucial for the patient, care givers and relatives to cope with the situation. It will also help medical practitioners to discover new drugs. For this reason there is an imperative need of image based automated techniques to assist medical professionals in correct diagnosis of Alzheimer’s disease using brain images. In recent years, there is an intensive research focused on the identification of Alzheimer’s disease from brain images using machine learning methods. Structural brain images like MRI have been extensively used in this regard. In our research work, we have proposed an automated image processing based approach for the early identification of Alzheimer’s disease from MRI scans of the brain. The dataset selected consists of 236 age and gender matched individuals and the features selected are volume of GM, WM and CSF, and size of hippocampus. In addition to image features, genetic aspects of Alzheimer’s disease are also considered in classification task. Well known APOE risk gene data and 14 SNP data associated with Alzheimer’s disease are incorporated in the feature set. Seven different classification models from different algorithmic paradigms are used for identification of patients and controls. For evaluation of our scheme, we have used cross validation and 66% vi ii split test strategy. Classification results are obtained using image features, genetic features and combination of the both. It is observed that image features produced best classification of cases and controls. On the other hand, genetic data can be very useful in predicting the risk of disease well before any changes to brain are observed. The proposed approach is novel because it has been able to achieve higher accuracy/specificity/sensitivity values even using smaller feature set which is not the case of existing approaches. Moreover, the proposed approach is capable of identifying AD patients in early stages. Best results (100% accuracy, 100% specificity, 100% sensitivity) are achieved using volume of GM and size of left hippocampus with J48 classifier. Similarly APOE risk gene predicted the disease with 75% accuracy for all classifiers whereas SNP data achieved 86% accuracy with Naïve Bayes and SVM. The proposed approach will play a vital role in the domain of Computer Aided Diagnostics and Preventive Studies.