نعت
آپؐ کی وجہ سے!
روشنی میں شگوفے کھل رہے ہیں
سبز وادیوں میں!
روایتوں ، تلازموں کے قافلے!
جگنوئوں ، تتلیوں میں خیمہ زن رہتے ہیں
آپ محبوب رب العالمیں۔۔۔!
آپؐ کی وجہ سے انجیر و زیتون میں زندگی رواں ہے
گلِ مریم کے دریچوں میں!
سوسن و نسترن کی حقیقتوں میں!
آپؐ کے نام کی سبز زمانے تسبیح کر رہے ہیں
شہر معصوم کا طواف کرتے ہوئے!
خانقاہ عشق میں اعتکاف کرتے ہوئے!
خوشبو کی آبرو۔۔۔بہار کی آرزو!
درِ معصوم سے فسوں کی خیرات لیتی ہے
درِ قبول کے روبرو!
پرندے اذانوں میں۔۔۔کشش کاف کے الہامی ایوانوں میں!
آپؐ کے نام کی گواہی دیتے ہوئے!
صبح وشام درود و سلام پڑھتے رہتے ہیں
Allah, Himself took the responsibility to protect the Quran. Hadith for the sake of safety of the Quran must also be protected. That is why as a prominent AlUmma scholars created principles to set Sehat (Status) and Zu'f (weakness) of traditions. Each tradition is important to be tested under these principles so that its possible Status and visual is clear. When starting a job prophet (SAW) narrated a tradition of which the name of Allah has taught literature but the tradition has been reported from different words, because of which scholars have different opinions of Sehat and Zu'f of the tradition. So, in this Article a research is presented about the aforesaid tradition.
The goal of this thesis is to present generalized geometry of two famous chain complexes through generalized homomorphisms. First one is Grassmannian configuration chain complex of free abelian groups generated by all the projective configurations of m points in any n-dimensional vector space Vn(F) defined over some arbitrary field F, while other is Goncharov polylogarithmic group complex of classical polylog groups. Many researchers defined geometry of Grassmannian configuration with classical polylogarithmic groups only for lower weights, i.e. n = 2 and 3, to present commutative diagrams. Here geometry for lower weights is not only redefined in different ways but also it is generalized for higher weights, i.e. n = 4, 5, 6 up to any weight n ∈ N. Initially, geometry for special cases for weight n = 2 and n = 3 is introduced in detail. Bloch Suslin polylogarithmic group complex and Grassmannian configuration chain complexes are connected through morphisms for weight 2 such that the associated polygon is proven to be commutative and composition of morphisms is bi-complex. For weight 3, Goncharov classical poly-logarithmic and Grassmannian configuration chain complexes are connected to provide commutative and bi-complex diagram. Then geometry of Goncharov motivic complex and Grassmannian configuration complex is defined for weight 4 up to generalized weight n ∈ N through two types of generalized morphisms. All the associated diagrams are shown to be bi-complex and commutative. Lastly, and most importantly, extensions in geometry of Goncharov polylogarithmic and Grassmannian configuration chain complexes are introduced to generalize all morphisms between the above two chain complexes and also to generalize functional equations of polylogarithmic groups up to order n. For extensions of geometry, additional morphisms are introduced for weight 3 up to higher weight 6, to extend commutative and bi-complex diagrams. Then these extensions in geometry are generalized for any weight n to all morphisms between above two chain complexes. Associated generalized commutative and bi-complex diagrams are exhibited