Search or add a thesis

Advanced Search (Beta)
Home > Smart switching

Smart switching

Thesis Info

Author

Khan,Rabia Amin

Supervisor

Sadia Arshid

Department

Department of Computer Science & Software Engineering

Program

BS

Institute

International Islamic University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2014

Thesis Completion Status

Completed

Page

xv,66

Subject

Computer Science

Language

English

Other

BS 004.66 KHS

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676724201458

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

وصلؔ بلگرامی

وصلؔ بلگرامی
اس ماہ یوپی اور بہار کے دو ممتاز شاعروں اور ادیبوں کی وفات کی اطلاع ملی، ان صفحات میں ان مرحوموں کا ذکر اس لئے ہوتا ہے کہ ہماری آئندہ نسلوں کو اپنے پچھلوں کے نام نیک کی خبر رہے، اسلامی تاریخ کا ایک بڑا اہم کارنامہ وفیات یعنی ہزاروں لاکھوں بزرگوں، فاضلوں، ادیبوں اور ممتاز لوگوں کی وفات کی تاریخ کا تعین ہے، تاریخ کی اس صنف پر بہت سی کتابیں مدون ہوئیں، کیا عجب ہے کہ شذرات کا یہ حصہ ایک دن اس عہد کے وفیات کے اوراق بن جائیں۔
وصل بلگرامی مرحوم و مغفور کے جاننے والوں اور ملنے والوں کو یہ سن کر بڑا قلق ہوگا، کہ ۲۸؍ رمضان المبارک ۱۳۶۱؁ھ کو رات کے وقت وہ ہمیشہ کے لئے ان سے جدا ہوگئے، مرحوم بڑے ملنسار، متواضع، پُرمحبت، دوستوں کے فداکار اور وقت پر ہر ایک کے کام آنے والے تھے، وہ گو ہمیشہ سے دیندار اور پابند وضع لوگوں میں تھے، جوانی میں حضرت مولانا رشید احمد صاحب محدث گنگوہی سے ملتے تھے اور اب ادھر دس بارہ برس سے حضرت مولانا اشرف علی تھانوی (متعنا اﷲ تعالیٰ بفیوضہ وبرکاتہ) سے ان کی ارادت کا تعلق تھا اور اب وہ زیادہ تر حضرت مولانا کی خدمت میں تھانہ بھون ہی میں خانقاہ امدادیہ کے ایک حجرہ میں مقیم رہتے تھے، وہیں اسی حجرہ میں چند روز کے بخار میں اچانک وفات پائی، شیخ نے اپنے مرید کی نماز جنازہ پڑھائی اور وہیں کے قبرستان میں تدفین ہوئی۔ خاکسار سے مرحوم کے تعلقات بہت پرانے تھے، ۱۹۰۶؁ء میں میری تعلیم ختم ہوئی اور وہ اس عمر میں تھے کہ عالمگیر کے نام سے ایک رسالہ نکال رہے تھے، ان سے بلگرام ہی کی مردم خیز زمین پر اسی زمانہ میں ملاقات ہوئی تھی، اس وقت وہ جوان شاعر اور ادیب تھے،...

خاندانی نظام کے استحکام میں رزق حلال کا کردار

Mankind came at this earth with their needs. The basic needs of mankind are food for eating, water for drinking, and for the protection of selves; they need wearing clothes and shelter to safeguard themselves from rain, hot and cold. The responsibility of living is dependent on these essential requirements. Islam teaches mankind to earn lawful food. Many verses and hadiths are related to earning lawful food. Islam is a peaceful religion. Therefore, to earn lawful (Halal) food is appreciated. This is a fact that the economic stability has positive effects on human beings' faith, believe, ethics, character, thinking, thoughts, personality and the system of a family. Whereas the financial instability puts negative effects on people's faith, believe ethics, character, thinking, thoughts, personality and the system of a family. That is why Islam advises mankind for earning lawful (Halal) foodstuff. All those sources are considered unlawful (Haraam) to earn money, which directly affects society or people’s wealth, life, and faith. The lawful (Halah) money (food) motivates the people towards good works and unlawful (Haraam) simulates the mankind to do sinful deeds. Food affects the body, like same the unlawful (Haraam) money (food) affects the soul. Lawful foodstuff produces a spiritual power in people for doing good and righteous and to inculcate give values, respect and importance to every relationship and to the society at large. The aim of this draft to elucidate the importance of lawful money (foodstuff) and its role in the stability of the family system.

Symmetry Analysis and Conservation Laws of Physical Models on Curved Surfaces

Physical models with non-flat background are important in biological mathematics. Most of the biological membranes are not flat in general. For example, membranes which convert energy in mitochondria and chloroplasts are tubes, buds and may be sheets. In most of the biological processes, the geometry of membranes is very important. The organization and shape of the membranes play a vital role in biological processes such as shape change, fusion- division, ion adsorption etc. A cell membrane is a system for exchange of energy and matter from the neighbourhood. Absorption and transformation of conserved quantities such as energy and matter from the environment are one of the characteristics of membranes. The shape of proteins, non zero curvature of membranes and involvement of conserved quantities lead one to discuss physical models on curved surfaces. Conservation laws play a vital role in science and also helpful to construct potential systems which can be used to calculate exact solutions of differential equations. Physical models on curved surfaces govern partial differential equation which need not to be derivable from variational principle. The partial Noether approach is the systematic way to construct the conservation laws for non-variational problems. The group classification and conservation laws for some partial differential equation on curved surfaces are presented in this dissertation. In particular some linear and nonlinear models of heat and wave equation on plane, cone, sphere are classified. The conservation laws for the (1 + 2)-dimensional heat equation on different surfaces are constructed via partial Noether approach and then the results are generalized for the (1+n)-dimensional case. The symmetry conservation laws relation is used to simplify the derived conserved vectors and exact solu- tions are constructed. We also extend these results to a special type of (1 + n)-dimensional linear evolution equation. Potential systems of some models from different sciences are also given. The similar analysis is performed for the (1 + 2)-dimensional wave equation on the sphere, cone and on flat surface. Furthermore, the nonlinear heat equation on curved surfaces is considered. A class of func- tions is found on the plane, sphere and torus, which is not only independent of the number of independent variables but also independent of the background metric. We consider whether the background metric or the nonlinearity have the dominant role in the infinitesimal gen- erators of heat equation on curved manifolds. Then a complete Lie analysis of the time dependent Ginzburg-Landau equation (TDGL model) is presented on the sphere and torus. In addition, for the (1 + n)-dimensional nonlinear wave equation (Klein Gordon Equation) it is proved that there is a class of functions which is independent from number of independent variables. Then for the (1 + 2)-dimensional wave equation it is proved that there is a class of functions which is invariant either the underlying space is a plane, sphere or torus.