Search or add a thesis

Advanced Search (Beta)
Home > Coping with Job Stress : A Social Exchange Perspective

Coping with Job Stress : A Social Exchange Perspective

Thesis Info

Author

Sadia Ansari

Department

Management Sciences

Program

MS

Institute

International Islamic University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2010

Thesis Completion Status

Completed

Subject

Technology Management

Language

English

Other

[MS 658.3125 ANC]

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676724351950

Similar


Loading...

Similar Thesis

Showing 1 to 20 of 100 entries
TitleAuthorSupervisorDegreeInstitute
MS
International Islamic University, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
PhD
University of the Punjab, Lahore, Pakistan
PhD
Institute of Business Management, Karachi, Pakistan
Mphil
University of Management and Technology, Lahore, Pakistan
PhD
COMSATS University Islamabad, Islamabad, Pakistan
PhD
University of the Punjab, Lahore, Pakistan
MS
International Islamic University, Islamabad, Pakistan
Virtual University of Pakistan, Lahore, Pakistan
MS
Riphah International University, Lahore, Pakistan
MA
University of Management and Technology, Lahore, Pakistan
MS
International Islamic University, Islamabad, Pakistan
PhD
Quaid-I-Azam University, Islamabad, Pakistan
MBA
International Islamic University, Islamabad, Pakistan
MS
Riphah International University, Lahore, Pakistan
PhD
University of the Punjab, Lahore, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
MS
International Islamic University, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
TitleAuthorSupervisorDegreeInstitute
Showing 1 to 20 of 100 entries

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

ڈاکٹر مسیح الزماں

ڈاکٹر اعجاز حسین ؍ ڈاکٹر مسیح الزماں
گزشتہ مہینہ میں ڈاکٹر اعجاز حسین سابق صدر شعبہ اردو الہ آباد یونیورسٹی کا انتقال حرکت قلب بند ہوجانے سے مظفرپور میں ہوگیا، جہاں وہ ممتحن بن کر گئے ہوئے تھے، ان کی میت الہ آباد لائی گئی، اپنی ملازمت سے سبکدوش ہونے کے بعد بھی لکھنے پڑھنے کا شغل جاری رکھا تھا، اہم اور مفید کتابوں کے مصنف تھے، جن میں مختصر تاریخ ادب اردو اور نئے ادبی رجحانات وغیرہ زیادہ مقبول ہوئیں، اپنے شاگردوں میں بہت مقبول رہے، ان کی وفات سے اردو ادب ایک بہت ہی لائق مصنف اور خدمت گزار سے محروم ہوگیا، ان سے کچھ ہی روز پہلے ڈاکٹر مسیح الزماں ریڈیو شعبہ اردو الہ آباد یونیورسٹی کی بھی وفات اچانک ہوگئی، اردو کی مرثیہ نگاری ان کا خاص موضوع تھا، ان کی عمر وفا کرتی تو اس صنف میں ان کا ادبی کارنامہ بڑا قابل قدر ہوتا، وہ پروفیسر مسعود حسن رضوی سابق صدر شعبہ اردو لکھنؤ یونیورسٹی کے داماد تھے، جن کے لئے اس کبرسنی میں یہ سانحہ بڑا ہی جانکاہ ہوگا۔
دعا ہے کہ خدا اردو ادب کے ان دونوں خدمت گزاروں کو غریق رحمت کرے، آمین ثم آمین۔ (صباح الدین عبدالرحمن، مارچ ۱۹۷۵ء)

 

ہندومت اور اسلام کی نظر میں انسانیت کا مفہوم

This paper attempts to analyze the Status of Humanity in religion. “Humanity" has a high status in religion because ALLAH created each and every thing for "Human". Man is called "Amir of Universe" or "Aide of ALLAH. ALLAH says in the Holy Quran, that each and every thing in this world is created for Man because Human has a high value (Surat An-Naml, verse, 2). In this world Human has nobility because nothing in this world has the ability to beat Human in beauty contest (Surat At Tin)

Ontology Based Personalized and Adaptive E-Learning Systems

The role of e-learning systems has become imperative in effectively educating masses of knowledge communities while maximizing the learner’s productivity. Barring this important role, e-learning systems face major challenges such as having context-aware and reusable learning contents. Furthermore, aspects oflearner profiling and categorization for deliverance of relevant learning contents, personalization and adaptive content recommendation to learners need to be focused. Currently, learning contents are static and not machine processable.Learner profiling may not fully comprehend the implicit as well as explicit characteristics of learners with subjective consideration of academic aspects at abstract level of granularity. Learner categorization techniques lack in dynamically considering the cognitive and inclinatory attributes of learners at finer level of granularity across the learning cycle. The learning contents offered may not accord with learning capacity of learners (lack personalization) with minimal support for content adaptivity.In proposed research, Ontology based Adaptive Semantic E-learning Framework (OASEF) is presented that exploits comprehensive set of learner attributes identified for effectively profiling the learners based on discriminative ones. Machine learning based dynamic and adaptive technique named Learner Categorization based on Hybrid Artificial Intelligence Techniques (LCHAIT) has been proposed for learner categorization. A supervised mode of learning was employed on a labeled data set modeled through a LearnerOntology. It has diverse learner’s profiles with implicit and explicit attributes pertinent to learner’s perspectives of demographics, academics, inclinations and behaviors. A comparative analysis of LCHAIT with three other machine learning techniques (Fuzzy Logic, Case Based Reasoning, and Artificial Neural Networks) is also presented. The learning contents maintained in the ontologies (CourseOntology, AssessmentOntoloy and DomainOntology) were recommended by considering the learner’s category to ensure personalization by a dynamic content recommender named Knowledge based Adaptive Semantic e-Learning Recommender (KASER). The efficacy of all categorization techniques was empirically measured while categorizing the learners based on their profiles through metrics of accuracy, precision, recall, f-measure and associated costs. These empirical quantifications assert LCHAIT as a better option than contemporary techniques as exhibited by greater accuracy of performance metrics. The performance of KASER was measured through degree of correctness in recommending the relevant learning contents compared with domain experts. Overall performance of OASEF was measured while recording the learner’s results spanning three years. The comparative analysis of proposed framework exhibits visibly improved results compared to prevalent approaches. These improvements are signified to the comprehensive attribute selection, learner profiling, dynamic techniques for learner categorization and effective content recommendation while ensuring personalization and adaptivity.