This project involves the design and construction of an autonomous robot engineered to complete some basic maintenance tasks of a regular lawn. The primary aim of the task is to design and construct such a device, which if it functions accordingly, makes lawn maintenance easier and more efficient, while at the same time help save the gardeners from the scorching summer heat. Initially, individual subsystems of the device were designed and tested separately which included; blade design for grass trimming, water tank and valve for watering, encoder motors and microcontrollers for car motion and sensors for obstacle avoidance and autonomous navigation through the lawn. Thorough research on each subsystem has been conducted by the team. The team had to improvise, at times, to alternate solutions during the implementation phase in order to achieve more accurate and efficient results. Following development and research, some components have been assembled and tested, both, individually and in combination with other components. Early prototypes of these subsystems included the use of single microcontroller to control the four motors, and a magnetometer to navigate on a straight path. After testing of prototypes, the device has been modified to improve efficiency and overall functionality. Some components, including the magnetometer, have been removed and encoders of the motors are being read instead, to compute distance and accurate turning of the vehicle; whereas the single microcontroller has been replaced by five microcontrollers using the master slave methodology. In order to provide the scheduled rebooting and to include a rain detection mechanism, additional components have been added before final testing of the prototype device, such as the inclusion of a real-time clock and a rain-detection sensor. In the construction of the final device, materials have been used to improve stability, strength and waterproofing. A body structure made from a strong water-resistant chemical has been added to the final device to provide a rigid frame for components, while a stable wooden board has been 6 used as the base. Similarly, watering system used in the prototype has been fixed using the same chemical to prevent water leakage. A number of existing components have been arranged on and around this frame, including the ultrasonic sensors and the trimming blade. The device has been tested for four main cases which includes obstacle avoidance, boundary detection, automatic rebooting along with rain sensing and, grass trimming along with watering. The tests conducted on the final device yielded consistent results in terms of functionality and efficiency. Therefore, the performance of the device during future assessments is expected to be successful, provided no damage or unknown alterations occur prior to the assessment
±ساغر جعفری(۱۹۱۳ء۲۰۰۲ء) کا اصل نام محمد حسین جعفری ہے۔ آپ سیالکوٹ میں پیدا ہوئے۔ ساغر جعفری ایک پختہ گو شاعر تھے۔ ان کا کلام’’ادبِ لطیف‘‘،’’ساقی‘‘،’’رومان‘‘ اور دیگر ملکی سطح کے رسائل و جرائد میں چھپتا رہا۔ساغر جعفری رومانوی تحریک سے وابستہ رہے۔ (۶۵۹) انھوں نے غزل ،نظم،گیت ،قطعہ ،نعت ،منقتبت،مرثیہ ،سلام،ماہیہ ،اور ہائیکو میں طبع آزمائی کی۔ آپ اقبال کی قومی و ملی شاعری سے بہت متاثر تھے۔ قومیت و وطنیت کے حوالے سے اقبال کا رنگ ساغر جعفری کی شاعری میں واضح طورپر نظر آتا ہے۔
’’بہارو نگار‘‘ ساغر جعفری کا پہلا مجموعہ کلام ہے۔ جس کا پہلا ایڈیشن ۱۹۹۵ء میں شائع ہوا۔ اس مجموعے کے صفحات دو سو چوبیس ہیں۔ا س کا پیش لفظ ڈاکٹر وحید قریشی اور تعارف احمد ندیم قاسمی نے لکھا ہے۔ اس مجموعے میں غزلیں ،ہائیکو اور ماہیے شامل ہیں۔ دوسرا شعری مجموعہ ’’برگِ گل‘‘ کے نام سے ۱۹۹۵ء میں شائع ہوا۔ اس مجموعے کے صفحات کی تعداد ایک سو چھہتر ہے۔ اس میں ان کی نظمیں ،غزلیں اور گیت شامل ہیں۔ برگِ گل میں مشاہیر پاکستان بالخصوص قائد اعظم اور اقبال کی خدمات پر انھیں خراجِ عقیدت پیش کیا گیا ہے۔ ان کے علاوہ میرانیس اور مرزا دبیر کے فکری و فنی اثرات کا اظہار بھی ہے۔ اس کتاب کا دیباچہ ڈاکٹر وزیر آغا اور تعارف ظہیر کا شمیری نے لکھا ہے۔
ساغر جعفری کا تیسرا شعری مجموعہ ’’دائرے‘‘ ہے۔ جو ۱۹۹۶ء میں شائع ہوا۔ اس کے صفحات کی تعداد ایک سو چوراسی ہے۔ اس مجموعے میں غزلیں اور قطعات شامل ہیں۔ اس کتاب کا مقدمہ ڈاکٹر انور سدید نے لکھا ہے۔ اس کے قطعات کا بڑا موضوع اخلاقی ،معاشرتی اور سماجی مسائل ہیں۔
’’جامِ مودت‘‘ ساغر کا چوتھا شعری مجموعہ ہے جو ۱۹۹۷ء میں شائع ہوا۔ اس کا فلیپ علامہ...
Islam is a way of life and it does not allow betray of any kind to anyone especially in trade and business. Islam does not allow to buy or sell any type of commodity by any means in which there is a chance of betray, and along with it Islam also does not allow jugglery, betting, selling of item before purchasing and selling a commodity without having a possession. In Islamic Jurisprudence these conditional trade is known asGhararIt is then divided in two types of which the first type is prohibited by all school of thoughts and the other type is allowed by some school of thoughts
A connection is obtained between isometries and Noether symmetries for the area-minimizing La- grangian. It is shown that the Lie algebra of Noether symmetries for the Lagrangian minimizing an (n − 1)-area enclosing a constant n-volume in a Euclidean space is so(n) ⊕s Rn and in a space of constant curvature the Lie algebra is so(n). Here for the non-compact space this has to be taken in the sense of being cut at a fixed boundary that respects the symmetry of the space and is not a volume enclosing hypersurface otherwise. Further if the space has one section of constant cur- vature of dimension n1 , another of n2 , etc. to nk and one of zero curvature of dimension m, with n≥ k j=1 nj + m (as some of the sections may have no symmetry), then the Lie algebra of Noether symmetries is ⊕k so(nj + 1) ⊕ (so(m) ⊕s Rm ). j=1 For a subclass of the general class of linear hyperbolic systems, obtainable from complex base hy- perbolic equation, semi-invariant and joint invariants are investigate by complex and real symmetry analysis. A comparison of all the invariants derived by complex and real methods is presented here which shows that the complex procedure provides a few invariants different from those extracted by real symmetry analysis for a linear hyperbolic system. The equations for the classification of symmetries of the scalar linear elliptic equation are obtained in terms of Cotton’s invariants. New joint differential invariants of the scalar linear elliptic equations in two independent variables are derived, in terms of Cotton’s invariants by application of the infinitesimal method. Joint differential invariants of the scalar linear elliptic equation are also derived from the bases of the joint differential invariants of the scalar linear hyperbolic equation under the application of the complex linear transformation. We also find a basis of joint differential invariants for such equations by utilization of the operators of invariant differentiation. The other invariants are functions of the bases elements and their invariant derivatives. Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by splitting the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables.