Search or add a thesis

Advanced Search (Beta)
Home > A Linguistic Analysis of T. S. Eliots the Waste Land

A Linguistic Analysis of T. S. Eliots the Waste Land

Thesis Info

Access Option

External Link

Author

Zeb, Aurang

Program

PhD

Institute

University of Peshawar

City

Peshawar

Province

KPK

Country

Pakistan

Thesis Completing Year

2002

Thesis Completion Status

Completed

Subject

English Language & Literature

Language

English

Link

http://prr.hec.gov.pk/jspui/bitstream/123456789/3755/1/2551H.pdf

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676724419912

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

کیا توانائی کے بحران کاحل ہمارے بس میں نہیں

کیا توانائی کے بحران کاحل ہمارے بس میں نہیں
اللہ تعالیٰ نے انسان کو عقل سلیم عطا فرمائی ہے اور اشرف مخلوقات بنایا ہے دیگر تمام مخلوقات سے زیادہ عزت و عظمت انسان ہی کو عطا فرمائی ہے۔ وہ اپنے ظاہری حواسِ خمسہ کے ساتھ ساتھ باطنی حواس کو بھی استعمال میں لا کر قابلِ صد افتخار کارہائے نمایاں سرانجام دینے کی قوت لا یموت کا حامل ہے۔ وہ اللہ تعالیٰ کی دی ہوئی عظیم قوت کے باعث نا قابل یقین امور کی انجام دہی میں سرفہرست رہتا ہے۔ اور بڑے بڑے لا ینحل مسائل اپنا حل خود ہی پیش کر دیتے ہیں لیکن عظمِ صمیم اور استقامت جیسی صفاتِ محمود سے متصف ہونا انتہائی ناگزیر ہے۔ جرأت، استقامت، عزم صمیم، یقین کامل اورعمل پیہم جیسی شمشیروں سے مسلح مجاہد جغرافیائی اور نظریاتی سرحدوں کی حفاظت بخوبی سرانجام دے سکتا ہے اور راستے میں آنے والی جملہ رکاوٹیں خس و خاشاک کی طرح ختم ہو جاتی ہیں۔
دو نیم ان کی ٹھوکر سے صحرا و دریا
سمٹ کر پہاڑ ان کی ہیئت سے رائی
توانائی کے بغیر زندگی کی گاڑی کو رواں دواں رکھنا خام خیالی ہے، پلک جھپکنے سے جوئے شیر نکا لنے تک جملہ امور کی انجام دہی کے لیے توانائی جز و لانیفک ہے۔ امور ِخانہ داری سے لے کر امورِمملکت کے نپٹانے تک توانائی کی افادیت سے صرف نظر نہیں کیا جاسکتا۔ توانائی کے بحران کا حل ہمارے پاس کیوں نہیں ہے، ہمارے پاس اس کا حل بدرجہ اتم موجود ہے لیکن توجہ کی ضرورت ہے۔ ہمارامعلم اپنے طالب علم کو اچھی تعلیم وتربیت کے ذریعے اس کی صحیح خطوط پر کتر بیونت کے جذ بے ، اس کو معاشرتی اقدار سے آگاہی کے ذریعے ،اس کو معاشی ضروریات کی تکمیل کے پیش نظر ہدایات کے ذریعے توانائی کے جملہ شعبہ...

English in the Workplace: Business English as a Lingua Franca in Boardwalk Direct Selling Company

With the current international competition among global companies, Business English as a Lingua Franca (BEFL) has become a necessity. As for one, Boardwalk Direct Selling Company recognizes the adoption of the BEFL concept within the organization to equip its workforce with adequate English language skills at par with global standards. This study aims to assess the organization’s current English proficiency and the readiness of its employees to embrace BEFL. This also presents the major English language skills areas that need improvement through training intervention. A stratified sampling method is utilized to extract data via an online survey. Respondents are strategically chosen to represent different strata such as organizational departments or groups, job levels, tenure, and age. A convenient size of 34 respondents participated in this study. Generally, respondents acknowledge the importance of the English language skill set in their job functions and as criteria for their career growth. Half of the sampling population affirms their English language proficiency. However, the study reveals that Boardwalk employees are willing to subject themselves to improving their English skills, most particularly in speaking and writing aspects. Given their willingness, the employees recommend that the company strengthen its BEFL trainings across the organization. Moreover, with the current setup of mostly working from home due to COVID restrictions, majority of the employees prefer online learning.

Wavelets and Radial Basis Functions in Scienti C Computing

The present work is an application of wavelets and radial basis functions to numerical computing. More specifically, we have used Haar and Legendre wavelet for applications of wavelets and multiquadric for applications of radial basis functions. The application areas considered in this thesis are the numerical solution of Integral Equations (IEs), various order Integrodifferential Equations (IDEs), systems of IEs, Elliptic Partial Differential Equations (EPDEs), Parabolic Partial Differential Equations (PPDEs) and highly oscillatory integrals. A few theoretical results are proved for efficient evaluation of some particular systems that arise when we apply one- or two-dimensional Haar wavelet in the wavelet collocation method. Based on these theoretical results new numerical methods based on Haar wavelet are developed for solution of IEs, IDEs and systems of IEs. EPDEs are solved numerically using collocation methods with Haar and Legendre wavelet. Legendre wavelet is also applied for the numerical solution of PPDEs. A new method based on multiquadric radial basis functions is introduced for numerical solution of highly oscillatory integrals. While applying Haar wavelet to numerical solution of IEs we have considered both nonlinear Fredholm and nonlinear Volterra IEs of the second kind. Similarly in case of IDEs a Haar wavelet based method is applied to find numerical solution of first and higher orders nonlinear Fredholm and nonlinear Volterra IDEs. The main advantage of this method is that it is generic as it can be applied to IEs, IDEs and systems of IEs. More specifically the new approach aims at the numerical solution of Fredholm, Volterra and Volterra-Fredholm types of IEs, IDEs and IDEs of higher orders including initial- as well as boundary-value problems. With a slight modification the method can also be applied to find numerical solution of two-dimensional IEs, system of IDEs and partial IDEs. Another distinguishing feature of themethod is that unlike many other existing methods in the literature it does not use any intermediate technique for numerical integration of the kernel function in IEs or IDEs. We have developed two new types of collocation methods based on Haar wavelet and Legendre wavelet for numerical solution of EPDEs. A modification of the collocation method based on Haar wavelet for elliptic differential equations is also introduced that improves the efficiency of the method. The collocation method based on Legendre wavelet is extended to find numerical solution of PPDEs. An advantage of the proposed methods is that it can be applied to different types of boundary conditions (BCs) with slight modifications. For highly oscillatory multidimensional integrals a new Levin’s type method based on multiquadric radial basis functions is developed. Levin method converts the numerical integration problem of highly oscillatory multidimensional integral to a PDE which is subsequently solved using meshless method. The proposed methods are validated on a variety of problems as well as numerical results of the proposed methods are compared with several existing methods from the literature. The numerical results show better performance of the proposed methods for several benchmark problems.