Search or add a thesis

Advanced Search (Beta)
Home > An Analysis of Aesthetic Experience With Special Reference to Nietzsche, Heidegger and Merleau-Ponty

An Analysis of Aesthetic Experience With Special Reference to Nietzsche, Heidegger and Merleau-Ponty

Thesis Info

Access Option

External Link

Author

Rawat, Khalid J Amil

Program

PhD

Institute

Hamdard University

City

Karachi

Province

Sindh

Country

Pakistan

Thesis Completing Year

1999

Thesis Completion Status

Completed

Subject

Education

Language

English

Link

http://prr.hec.gov.pk/jspui/bitstream/123456789/4167/1/2740H.pdf

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676724468428

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

مولانا حامد علی خاں

مولانا حامد علی خاں مرحوم
رام پور کسی زمانہ میں دارالعلوم اوردارالعلماء تھا۔یہاں کی گلی گلی کے اندر اونچے سے اونچے علماء موجود تھے۔طلباء کی بھی انتہائی کثرت تھی۔ہزاروں کی تعداد میں یہاں طلباء موجود رہتے تھے جس میں افغانی،پنجابی،بنگالی،آسامی،برما اوررنگون تک کے رہنے والے یہاں آتے تھے۔خود مقامی آدمیوں کوبھی انتہائی ذوق تھا کہ وہ عربی اورفارسی پڑھیں اوراس میں کمال حاصل کریں۔
یہاں پرفارسی کے باکمال حضرات میں سے مولوی عبدالرزاق خاں طالبؔ(متوفی۱۹۱۶ء)مولوی حسین شاہ خاں نامیؔ(م۱۸۹۴ء)بڑے بڑے قابل فارسی داں ہوئے۔عربی داں حضرات میں یہاں پرکچھ تومقامی علماء ہوئے اور کچھ بیرونی علماء نے یہاں آکر سکونت اختیار کرلی۔بیرونی علماء میں سے مولانا عبدالعلی بحرالعلوم(م۱۱۲۵ھ)تین سال تک رام پور میں رہے۔ملا محمد حسن لکھنوی عرصۂ دراز تک یہاں پررہے، یہیں شادی کی اور یہیں۱۷۸۴ء/۱۱۹۹ھ میں انتقال فرمایا۔ مولوی فضل حق صاحب خیرآبادی (م۱۸۶۱ء)مولوی عبدالحق خیر آبادی (م۱۸۹۹ء) بھی یہاں مقیم رہے۔عبدالحق خیرآبادی کے صاحبزادے مولوی اسد الحق صاحب نے بھی یہیں پر۱۳۱۸ھ/۱۹۰۰ء میں انتقال فرمایا۔
مقامی علماء میں سے مولانا فضل حق رامپوری بڑے جلیل القدر علامہ ہوئے۔ برما سے لے کر بخارا تک ان کا چرچا تھا۔انھوں نے بڑی گراں قدر تصانیف چھوڑی ہیں کہ جن کے پڑھنے والے اور پڑھانے والے بھی اب دنیا میں موجود نہیں رہے۔مولانا موصوف میرے استاذ تھے اور عرصۂ دراز تک مدرسہ عالیہ کے پرنسپل رہے۔ ۱۹۴۰ء میں وصال ہوگیا۔ مولانا منور علی صاحب (م۱۹۳۳ء) یہاں کے مشہور محدث تھے۔ان کے استاذ الاستاذ میاں محمد شاہ صاحب (۱۹۲۰ء)اوران کے استاذ میاں حسن شاہ صاحب(م۱۳۱۲ھ)محدثین کرام میں سے تھے۔مولوی اکبر علی خاں صاحب(م۱۳۰۲ھ)بھی یہاں کے مشہورومعروف محدث تھے، مولانا عبدالعلی خاں ریاضی داں (م۱۳۰۳ھ) اور مولوی عبدالعلی صاحب منطقی(م۱۲۷۸ھ)بھی یہاں کے مشہور عالم ہوئے۔ الغرض یہ حضرات وہ تھے کہ جن میں سے بعض کو میں نے خود بھی دیکھا تھا۔ میرے طالب علمی کے زمانہ میں مولوی...

اسیران جنگ سے متعلق اسلام کے شرعى احکام کا علمى و تحقیقی جائزہ

The history of the prisoners of war is as old as the history of wars. The prisoners of war have been kept since old times. Before Islam there were only two kinds of treatment of prisoners of war. Either they were killed or made slaves. But Islam created many new ways for them which include: exchange of prisoners, ransom, gratuitous release and making them tax payers. And these options were used so as to allow them greater chance of winning freedom. All these options were being opted during the era of Holy Prophet SAW and later on carried out by Khulafa e Rashideen (RA) and other Muslim rulers. Whereas the killing of prisoners of war was limited to solid and irrefutable causes as exceptional cases. Furthermore the enslavement of prisoners was only opted as reciprocity. Both the above mentioned situations are not established rule in Islam. That's why there is no mention of these two options in Holy Quran. In this research paper all these options have been critically examined and researched. The arguments and references have been taken from Holy Quran and Hadith along with the sayings of Sahaba (RA), the practices of Muslim rulers and the judgments of Islamic jurists in this regard.

Homomorphic Images of Generalized Triangle Subgroups of Psl 2, Z

The modular group generated by two linear fractional transformations, u : z 7! 1 z and v : z 7! z1 z , satisfying the relations u2 = v3 = 1 [46]. The linear transformation t : z 7! 1 z inverts u and v, i,e, t2 = (vt)2 = (ut)2 = 1 and extends PSL(2; Z) to PGL(2;Z). In [72] a condition for the existence of t is explained. G. Higman introduced coset diagrams for.PSL(2; Z) and PGL(2;Z): Since then, these have been used in several ways, particularly for nding the subgroups which arise as homomorphic images or quotients of PGL(2;Z). The coset diagrams of the action of PSL(2;Z) represent permutation representations of homomorphic images. In these coset diagrams the three cycles of the homomorphic image of v, say v, are represented by small triangles whose vertices are permuted counter-clockwise, any two vertices which are interchanged by homomorphic image of u, say u, are joined by an edge, and t is denoted by symmetry along the vertical line. The xed points of u and v, if they exist are denoted by heavy dots. The xed points of t lies on the vertical line of symmetry. A real quadratic irrational eld is denoted by Qpd, where d is a square free positive integer. If =a1 + b1pdc1 is an element of Qpd, where a1;b1;c1;d; are integers, then has a unique representation such that a1;a2 1 dc1 and c1 are relatively prime. It is possible that ; and and its algebraic conjugate = a1 pdc1 have opposite signs. In this case is called an ambiguous number by Q. Mushtaq in [69]. The coset diagrams of the action of PSL(2;Z) on Qpddepict interesting results. It is shown in [69] that for a xed value of d, there is only one circuit in the coset diagram of the orbit, corresponding to each .Any homomorphism 1 : PGL(2;Z) ! PGL(2;q) give rise to an action on PL(Fq): We denote the generators ()1; ()1 and (t)1 by ; and t: If neither of the generators , and t lies in the kernel of 1; so that , and t are of order 2, 3 and 2 respectively, then 1 is said to be a non-degenerate homomorphism: In addition to these relations, if another relation ( )k = 1 is satised by it, then it has been proved in [74] that the conjugacy classes of non-degenerate homomorphisms of PGL(2;Z) into PGL(2;q) correspond into one to one way with the conjugacy classes of 1 and an element of Fq: That is, the actions of PGL(2;Z) on PL(Fq) are parametrized by the elements of Fq: This further means that there is a unique coset diagram, for each conjugacy class corresponding to 2 Fq. Finally, by assigning a parameter 2 Fq to the conjugacy class of 1, there exists a polynomial f() such that for each root i of this polynomial, a triplet ; ; t 2 PGL(2;q) satises the relations of the triangle group (2;3;k) =D ; ; t : 2 = 3 = ( t)2 = ( )k = ( t)2 = ( t)2 = 1E: Hence, we can obtain the triangle groups (2;3;k) through the process of parametrization. Thegeneralizedtrianglegrouphasthepresentationu;v : ur;vs;Wk;where r; s; k are integers greater than 1, and W = u1v1:::ukvk, where k > 1;0 < i < r and 0 < i < s for all i. These groups are obtained by natural generalization of (r;s;k) dened by the presentationsDu;v : ur = vs = (uv)k = 1E, where r;s and k are integers greater than one. It was shown in [37] that G is innite if 1 r + 1 s + 1 k 1 provided r 3 or k 3 and s 6, or (r; s;k) = (4;5;2): This was generalized in [4], where it was shown that G is innite whenever 1 r + 1 s + 1 k 1 . A proof of this last fact can be seen in [101].A generalized triangle group may be innite when 1 r + 1 s + 1 k > 1. The complete classication of nite generalized triangle groups is given in 1995 by J. Howie in [39] and later by L. Levai, G. Rosenberger, and B. Souvignier in [57] which are fourteen in number. As there are fourteen, generalized triangle groups classied as nite [39], our area of interest is the set of groups which are homomorphic images or quotients of PSL(2;Z). Out of these fourteen only eight groups are quotients of the modular group. In this study, we have extended parametrization of the action of PSL(2;Z) on PL(Fp), where p is a prime number, to obtain the nite generalized triangle groupsD 2 = 3 = 23 = 1E by this parametrization. By parametrization of action of PGL(2;Z) on PL(Fp) we have obtained the coset diagrams of D 2 = 3 = 23 = 1E for all 2 Fp. This thesis is comprised of six chapters. The rst chapter consists of some basic denitions and concepts along with examples. We have given brief introduction of linear groups, the modular and the extended modular group, real quadratic irrational elds, nite elds, coset diagrams, triangle groups, and generalized triangle groups. In the second chapter, we show that entries of a matrix representing the element g =(v)m1v2m2l where l 1 of PSL(2;Z) =;v : 2 = v3 = 1are denominators of the convergents of the continued fractions related to the circuits of type (m1;m2); for all m1;m2 2N: We also investigate xed points of a particular class of circuits of type (m1;m2) and identify location of the Pisot numbers in a circuit of a coset diagram of the action of PSL(2;Z) on Qpd[f1g, where d is a non-square positive integer.In the third chapter we attempt to classify all those subgroups of the homomor phic image of PSL(2;Z) which are depicted by coset diagrams containing circuits of the type (m1; m2). In the fourth chapter we devise a special parametrization of the action of modular group PSL(2;Z) on PL(Fp), where p is prime, to obtain the generalized triangle groups D 2 = 3 = 2k = 1E and by parametrization we obtain the coset diagrams of D 2 = 3 = 2k = 1E for all 2 Fp. In the fth chapter we investigate the action of PSL(2;Z) on PL(F7n) for di⁄erent values of n, where n 2 N, which yields PSL(2;7). The coset diagrams for this action are obtained, by which the transitivity of the action is inspected in detail by nding all the orbits of the action. The orbits of the coset diagrams and the structure of prototypical D168 Schwarzite [48], are closely related to each other. So, we investigate in detail the relation of these coset diagram with the carbon allotrope structures with negative curvature D168 Schwarzite. Their relation reveals that the diagrammatic structure of these orbits is similar to the structure of hypothetical carbon allotrope D56 Protoschwarzite which has a C56 unit cell. In the last chapter, we investigate the actions of the modular group PSL(2;Z) on PL(F11m) for di⁄erent values of m; where m 2 N and draw coset diagrams for various orbits and prove some interesting results regarding the number of orbits that occur.