گائوں کا رستہ
میرے گائوں جاتا تھا جو
اُس رستے کے دونوں جانب
میٹھے آموں کے کچھ بوٹے
اونچے سایہ دار شجر بھی
کچھ شیشم کے ، کچھ پیپل کے
کچھ لیموں کے چھوٹے چھوٹے
بھینی بھینی خوشبو والے
کچھ پھولوں والے بوٹے بھی
کچھ کانٹوں والے بوٹے بھی
جیسے کیکر ، بیری ، آڑو
کچھ چمکیلے پتّوں والے
پتلی لمبی شاخوں والے
پر پھیلائے رستے اوپر
بادل چھائے رستے اوپر
گرمی میں سب کے سب گھر سے
باہر آئے رستے اوپر
ساجن ، متّر ، بیلی سارے
روز بلائے رستے اوپر
میں جب کالج آتا جاتا
چڑیوں کی چوں چوں سنتا تھا
کوئل کی کُو کُو سنتا تھا
بلبل بھی گانا گاتی تھی
ہجر کے ماروں کی خاطر جب
وصل کے گیت ہوا بنتی تھی
رنگ بہار کے اُس مٹی سے
ہر دل کی دھڑکن چنتی تھی
اک مدّت سے اک عرصے سے
چھوٹ گیا وہ رستہ مجھ سے
جو میرے گائوں جاتا تھا
This paper aims at an evaluation of various approaches to define and redefine the classical theory of the I‘jaz (the inimitability of the Qur’ān) in the perspective of the challenges and problems faced by the Muslim society emphasising a need to cope with the rational thinking, modernity, scientific progress, psychological advancement and civilizational development, though there has been a comparatively lesser description of the rhetoricism of the Qur’ān too. It provides an account of scholarship exploring some novel dimensions of the matchlessness of the Qur’ān in the contemporaneous context. They have justified rationally and psychologically the Qur’ānic historic challenge of producing a book or its some surahs or few verses similar to the Qur’ān that has offered the irresistible call to the whole mankind: “Say: “If the whole of mankind and Jinns were to gather together to produce the like of this Qur’ān, they could not produce the like thereof, even if they backed up each other with help and support”. (Al-Isra 17: 88) The same challenge occurs in the Qur’ān on three previous occasions (Al-Baqarah, 2: 23-24; Yunus 10: 38, and Hūd 11: 13) and later also in al-Tūr (52: 33-34). The content of all the verses referred to above is in response to the allegation of the unbelievers that the Qur’ān had been composed by the Prophet (peace be on him) and then falsely ascribed to God. All this was refuted. This refutation of the Qur’ān was logically established by the modern Arabic scholars through their sound arguments.
In the present thesis we investigate the almost Hermitian geometry of the twistor spaces of oriented Riemannian 4-manifolds. Holomorphic and orthogonal bisectional curvatures have been intensively explored on K ̈hler manifolds and a lot of important results have been obtained in this case. a But in the non-K ̈hler case these curvatures are not very well studied and it seems a that the main reason for that is the lack of interesting examples. The first part of the thesis is devoted to the study of the curvature properties of Atiyah-Hitchin- Singer and Eells-Salamon almost Hermitian structures. This is used to provide some interesting examples of almost Hermitian 6-manifolds of constant or strictly positive holomorphic, Hermitian and orthogonal bisectional curvatures. In the second part of the thesis we determine the Gray-Hervella classes of the so-called compatible almost Hermitian structures on the twistor spaces, recently in- troduced by G. Deschamps . The interest in determining these classes is motivated by the fact that the Gray-Hervella classification is a very useful tool in studying almost complex manifolds. Our results in this direction generalize the well known integrabil- ity theorems by Atiyah-Hitchin-Singer, Eells-Salamon and Deschamps and show that there is a close relation between the properties of the spectrum of the anti-self-dual Weyl tensor of an almost K ̈hler 4-manifold and the almost Hermitian geometry of a its twistor space.