Search or add a thesis

Advanced Search (Beta)
Home > Effect of Different Feed Ingredients on Growth, Hematology and Vital Organs in Juvenile Labeo Rohita.

Effect of Different Feed Ingredients on Growth, Hematology and Vital Organs in Juvenile Labeo Rohita.

Thesis Info

Access Option

External Link

Author

Javed Iqbal, Khalid

Program

PhD

Institute

University of Veterinary and Animal Sciences

City

Lahore

Province

Punjab

Country

Pakistan

Thesis Completing Year

2014

Thesis Completion Status

Completed

Subject

Aquaculture

Language

English

Link

http://prr.hec.gov.pk/jspui/bitstream/123456789/14307/1/6402H.pdf

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676724653758

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

یہ عشق میں نہ سوچ تو کہ کیا نہیں ملا

یہ عشق میں نہ سوچ، تُجھے کیا نہیں ملا
ہے کر لیا، تو خاک میں اپنی جبیں ملا

ہم راہ دیکھتے ہی رہے جس کی عمر بھر
آیا وہ شہر میں بھی تو ہم سے نہیں ملا

بچپن میں دل کی بستی میں رہتے تھے کتنے لوگ
دیکھا شباب میں تو فقط اک مکیں ملا

اگلے جہاں کے عہد پہ ہم کو دیا ہے ٹال
کم بخت ہم کو وہ تو بلا کا ذہیں ملا

کہتے رہے تھے یار جسے ہم تمام عمر
اک دن عدو کی بزم میں وہ نازنیں ملا

گر یاں دیا نہ تُو نے تو نہ لوں گا حشر میں
یارب اسے اگر ہے ملانا، یہیں ملا

تفسیر الدر المنثور فی التفسیر با لماثور میں بعض موضوعی روایات کا علمی اور تحقیقی جائزہ: سورۃ النساء تا سورۃ المائدہ

Jalal-ud-Din Abdur  Al Rahman ibn Bakr-Suyuti who has written a well-known Tafseer Al-Durr Al-Man’thur  fi al-tafsir Bil-Ma’thur. This is a big treasurer of explanatory traditions but unfortunately he has quoted some fabricated narrations in this tafseer which caused doubt about the validity of his commentary. This article deals with the some fabricated report.

Optimization of Classifiers Using Genetic Programming

The success of pattern classification system depends on the improvement of its classification stage. The work of thesis has investigated the potential of Genetic Programming (GP) search space to optimize the performance of various classification models. In this thesis, two GP approaches are proposed. In the first approach, GP is used to optimize the performance of individual classifiers. The performance of linear classifiers and nearest neighbor classifiers is improved during GP evolution to develop a high performance numeric classifier. In second approach, component classifiers are trained on the input data and their predictions are extracted. GP search space is then used to combine the predictions of component classifiers to develop an optimal composite classifier (OCC). This composite classifier extracts useful information from its component classifiers during evolution process. In this way, the decision space of composite classifier is more informative and discriminant. Effectiveness of GP combination technique is investigated for four different types of classification models including linear classifiers, support vector machines (SVMs) classifiers, statistical classifiers and instance based nearest neighbor classifiers. The successfulness of such composite classifiers is demonstrated by performing various experiments, while using Receiver Operating Characteristics (ROC) curve as the performance measure. It is evident from the experimental results that OCC outperforms its component classifiers. It attains high margin of improvement at small feature sets. Further, it is concluded that classification models developed by heterogeneous combination of classifiers have more promising results than their homogenous combination. GP optimization technique automatically caters the selection of suitable component classifiers and model selection. Two main objectives are achieved, while using GP optimization. First, objective achieved is the development of more optimal classification models. The second one is the enhancement in the GP search strategy itself.