یہ عشق میں نہ سوچ، تُجھے کیا نہیں ملا
ہے کر لیا، تو خاک میں اپنی جبیں ملا
ہم راہ دیکھتے ہی رہے جس کی عمر بھر
آیا وہ شہر میں بھی تو ہم سے نہیں ملا
بچپن میں دل کی بستی میں رہتے تھے کتنے لوگ
دیکھا شباب میں تو فقط اک مکیں ملا
اگلے جہاں کے عہد پہ ہم کو دیا ہے ٹال
کم بخت ہم کو وہ تو بلا کا ذہیں ملا
کہتے رہے تھے یار جسے ہم تمام عمر
اک دن عدو کی بزم میں وہ نازنیں ملا
گر یاں دیا نہ تُو نے تو نہ لوں گا حشر میں
یارب اسے اگر ہے ملانا، یہیں ملا
Jalal-ud-Din Abdur Al Rahman ibn Bakr-Suyuti who has written a well-known Tafseer Al-Durr Al-Man’thur fi al-tafsir Bil-Ma’thur. This is a big treasurer of explanatory traditions but unfortunately he has quoted some fabricated narrations in this tafseer which caused doubt about the validity of his commentary. This article deals with the some fabricated report.
The success of pattern classification system depends on the improvement of its classification stage. The work of thesis has investigated the potential of Genetic Programming (GP) search space to optimize the performance of various classification models. In this thesis, two GP approaches are proposed. In the first approach, GP is used to optimize the performance of individual classifiers. The performance of linear classifiers and nearest neighbor classifiers is improved during GP evolution to develop a high performance numeric classifier. In second approach, component classifiers are trained on the input data and their predictions are extracted. GP search space is then used to combine the predictions of component classifiers to develop an optimal composite classifier (OCC). This composite classifier extracts useful information from its component classifiers during evolution process. In this way, the decision space of composite classifier is more informative and discriminant. Effectiveness of GP combination technique is investigated for four different types of classification models including linear classifiers, support vector machines (SVMs) classifiers, statistical classifiers and instance based nearest neighbor classifiers. The successfulness of such composite classifiers is demonstrated by performing various experiments, while using Receiver Operating Characteristics (ROC) curve as the performance measure. It is evident from the experimental results that OCC outperforms its component classifiers. It attains high margin of improvement at small feature sets. Further, it is concluded that classification models developed by heterogeneous combination of classifiers have more promising results than their homogenous combination. GP optimization technique automatically caters the selection of suitable component classifiers and model selection. Two main objectives are achieved, while using GP optimization. First, objective achieved is the development of more optimal classification models. The second one is the enhancement in the GP search strategy itself.