Search or add a thesis

Advanced Search (Beta)
Home > Global Business Professionals and Financial English: Developing a Need-Based Course for Bank Officers in Pakistan

Global Business Professionals and Financial English: Developing a Need-Based Course for Bank Officers in Pakistan

Thesis Info

Access Option

External Link

Author

Muhammad Ibrar Anver

Supervisor

Muhmmad Safeer Awan

Program

PhD

Institute

International Islamic University

City

Islamabad

Province

Islamabad.

Country

Pakistan

Thesis Completing Year

2017

Thesis Completion Status

Completed

Subject

English Language & Literature

Language

English

Link

http://prr.hec.gov.pk/jspui/bitstream/123456789/8250/1/Muhammad_Ibrar_Anver_HSR_2017_English_IIU_06.11.2017.pdf

Added

2021-02-17 19:49:13

Modified

2023-03-12 18:01:09

ARI ID

1676724734548

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

خلیفہ عبدالحکیم

خلیفہ عبدالحکیم
خلیفہ عبدالحکیم ایک بالغ نظر فلسفی اور ممتاز صاحب علم و قلم تھے، وہ بھی عثمانیہ میں فلسفہ کے پروفیسر تھے، مذہب پر بھی ان کی نگاہ تھی، اور شعر و ادب کا بھی ستھرا اور پاکیزہ مذاق رکھتے تھے، اقبال کے فلسفہ اور کلام کے بڑے عارف اور اس کے نہایت اچھے شارح و ترجمان تھے، جامعہ عثمانیہ سے ریٹائر ہونے کے بعد لاہور میں اقبال کی یادگار میں ایک ادارہ اقبال اکیڈمی قائم کیا تھا، اور ’’اقبال‘‘ کے نام سے ایک بلند پایہ علمی رسالہ انگریزی اور اردو دونوں زبانوں میں نکالتے تھے، ادارۂ ثقافت اسلامیہ کے بھی بانیوں میں اور اس کے رکن رکین تھے، اس کا رسالہ ثقافت بھی ان ہی کی ادارت میں نکلتا تھا، ان کا علمی مذاق نہایت بلند تھا، اور ان کی پوری زندگی علم و ادب کی خدمت میں گزری، انھوں نے فلسفہ، ادب اور مذہب پر نہایت قابل قدر کتابیں لکھیں، ان کی دو کتابیں فکر غالب اور افکار اقبال خاص طور سے اہم ہیں مگر ان کے خیالات میں تجدد کا اثر تھا اس لیے مذہبی تعلیمات کی ترجمانی میں ان سے غلطیاں ہوئیں، لیکن ان کی نیت نیک اور ان کے دل میں مذہب کا درد تھا اور ان کی کتابیں ایک طبقہ کے لیے مفید بھی ہیں، اس حیثیت سے انھوں نے مذہب کی بھی خدمت کی، اﷲ تعالیٰ ان کی قلمی لغزشوں سے درگزر ان کی خدمت قبول اور ان کی مغفرت فرمائے، اب ایسے خالص اہل علم مشکل سے پیدا ہوں گے۔ (شاہ معین الدین ندوی، مارچ ۱۹۵۹ء)خلیفہ عبدالحکیم ایک بالغ نظر فلسفی اور ممتاز صاحب علم و قلم تھے، وہ بھی عثمانیہ میں فلسفہ کے پروفیسر تھے، مذہب پر بھی ان کی نگاہ تھی، اور شعر و ادب کا بھی ستھرا اور پاکیزہ مذاق رکھتے تھے، اقبال کے فلسفہ...

PENGARUH PEMBELAJARAN ONLINE BERBASIS WEBSITE ELEARNING MADRASAH TERHADAP HASIL BELAJAR FISIKA SISWA KELAS X IPA MAN 2 KOTA PALU

Penelitian ini bertujuan untuk mengetahui seberapa besar pengaruh Pembelajaran Online berbasis Website Elearning Madrasah Terhadap Hasil Belajar Fisika Siswa Kelas X IPA MAN 2 Kota Palu Tahun Ajaran 2020/2021. Serta untuk mengetahui apa saja kendala dan hambatan yang dirasakan guru maupun siswa saat melakukan kegiatan belajar mengajar online selama masa pandemic covid-19 ini. Responden adalah siswa kelas X IPA1 MAN 2 Kota Palu karena mereka telah memiliki fasilitas internet, komputer dan gadget. Penelitian ini menggunakan metode kuantitatif dengan uji data menggunakan spss 25. Data diperoleh melalui pengisian kuesioner oleh siswa dan juga dilakukan wawancara oleh guru sebagai data pendukung. Uji yang dilakukan yaitu validitas, reabilitas, dan uji R square untuk mencari seberapa besar pengaruh pembelajaran online berbasis website elearning madrasah terhadap hasil belajar fisika siswa. Hasil penelitian menunjukkan bahwa pembelajaran online berbasis website elearning madrasah mempunyai pengaruh yang signifikan terhadap hasil belajar fisika siswa sebanyak 85, 7%. Dari hasil pengujian spss bahwa nilai sig.(2-tailed) setiap variabel X dan variabel Y adalah < 0,005. Dilihat dari nilai rhitung dan rtabel didapat hasil bahwa nilai rhitung > rtabel. Nilai rtabel 0,3291 diperoleh dari nilai N 36-2=34. Angka 34 mempunyai nilai r tabel 0,3291. Hasil uji reliabilitas dapat diketahui bahwa secara keseluruhan variabel X dan Y memiliki nilai cronbach’s alpha > 0, 06. Pembelajaran online berbasis website elearning madrasah mampu menjadi penolong dunia pendidikan khususnya di madrasah pada masa pandemi Covid 19 ini. Menurut penuturan wali kelas juga hasil belajar siswa cenderung stabil dan tidak mengalami penurunan walaupun pembelajaran dilakukan dengan online.

Numerical Simulations of Fractional Order Nonlinear Dynamical Systems

Mathematical models play a role in analyzing and control infectious diseases in a population. These models construction clarifies assumptions, variables and parameters, and provide conceptual insights such as thresholds and basic reproduction numbers for various infectious diseases. Some very important theories are built and tested, some quantitative speculations are made and some specific questions are answered with the help of mathematical models. This leads to a better strategy for overcoming the transmission of diseases.For the last twenty years, chaos theory has brought about a valuable association between mathematicians and researchers in bio-medical sciences. Such association has described a biomedical system with ordinary and fractional order mathematical model usually consists of a nonlinear ordinary or fractional order differential equation or system of non-linear ordinary or fractional order differential equations. The fractional order mathematical model is used to predict the behavior of corresponding bio-medical system. The model must be investigated to guarantee that it does not foresee chaos in the bio-medical system under examination, when chaos is not actually present in the system. The mathematician must further confirm that any method used to solve the fractional order mathematical model does not envisage chaos when chaos is not a feature of the bio-medical system. The contrived chaos can be avoided and stability can be retained using implicit methods instead of using explicit numerical methods. In recent years, fractional differential equations have become one of the most important topics in mathematics and have received much consideration and growing curiosity due to the options of unfolding nonlinear systems and due to their prospective applications in physics, control theory, and engineering. The generalization is obtained by changing the ordinary derivative with the fractional order derivative. The benefit of fractional differential equation systems is that they allow greater degrees of freedom and incorporate the memory effect in the model. Due to this fact, they were introduced in epidemiological modeling systems. The main reason for using integer order models was the absence of solution methods for fractional differential equations. Various applications, like in the reaction kinetics of proteins, the anomalous electron transport in amorphous materials, the dielectrical or mechanical relation of polymers, the modeling of glass forming liquids and others, are successfully performed in numerous research works.The physical and geometrical meaning of the non-integer integral containing the real and complex conjugate power-law exponent has been proposed. Since integer order differential equations cannot precisely describe the experimental and field measurement data, as an alternative approach, non-integer order differential equation models are now being widely applied. The advantage of fractional-order differential equation systems over ordinary differential equation systems is that they allow greater degrees of freedom and incorporate memory effect in the model. In other words, they provide an excellent tool for the description of memory and hereditary properties which were not taken into account in the classical integer order model.In the present research work, we developed and investigated fractional order numerical techniques for the solution of fractional order models for infectious diseases, whose fixed points will be seen to be the same as the critical points of model equations and to have the same stability properties. These techniques will numerically analyze the behavior of solution of the fractional order models, stability analysis of the steady states and threshold criteria for the epidemics. The proposed techniques may be used with arbitrarily fractional order, thus making them more economical to use when integrating for arbitrary fractional order and may preserve all the essential properties like dynamical consistency, positivity and boundedness, of the corresponding fractional order dynamical systems.