یہ اقبال کی مرتب کردہ نہیں بلکہ کبھی کبھی اقبال اپنی باتیں ڈائری میں محفوظ کر لیا کرتے تھے۔ یہ مختصرسی یادداشتیں ہیں اور یہ سلسلہ چند ماہ تک جاری رہا۔ اقبال نے 27 اپریل 1910ء میں انہیں لکھنا شروع کیا۔ کچھ دن تک یہ سلسلہ جاری رہا پھر رک گیا۔ یہ ڈائری ان کے کاغذات سے ملی جسے جاوید اقبال نے 1961ء میں شائع کیا۔
اس کا پہلا ترجمہ ”ڈاکٹر افتخار احمد صدیقی “نے کیا جو دسمبر 1973ء میں منظر عام پر آیا۔ اس کا نام ”شذرات فکر اقبال تھا اور اس میں اقبال کے 125 افکار کا ترجمہ پیش کیا گیا تھا۔ یہ کتاب مجلس ترقی ادب، کلب روڈ لاہور نے شائع کی۔ اس کے بعد پروفیسر عبدالحق نے " بکھرے خیالات" کے عنوان سے اس کا ترجمہ کیا جس کے دو ایڈیشن سامنے آئے۔ پہلا 1975ء میں اور دوسرا 1985 ء میں ۔شذرات فکر اقبال چونکہ ہندوستان میں دستیاب نہ تھا اس لیے ہندوستان میں ” بکھرے خیالات “کی ضرورت پڑی۔ پروفیسر عبدالحق اس حوالہ سےکہتے ہیں:
”ترجمہ پریس میں تھا کہ یہ اطلاع ملی کہ پاکستان میں شذرات فکر اقبال کے نام
سے اس ڈائری کا ترجمہ شائع ہو چکا ہے۔ چونکہ وہ مطبوعہ ترجمہ ہندوستان میں
دستیاب نہیں ہے، اس لیے یہ ترجمہ شائع کیا جارہا ہے“ (11)
بکھرے خیالات کی نئی اشاعت میں جو کہ تیسری اشاعت ہے اور اقبال اکیڈمی (ہند) نئی دہلی نے 2015ء میں اسے شائع کیا ہے اس میں اقبال کے دریافت شدہ گیارہ خیالات کو بھی شامل کیا گیا ہے اس طرح " بکھرے خیالات " کی نئی اشاعت میں کل (136) شذرات کا ذکر ہے۔ پاکستان ہی سے اس ڈائری کا ایک ترجمہ " منتشر خیالات اقبال ” کے عنوان سے بھی ہوا ہے۔ اس کے مترجم میاں ساجد علی ہیں اس ترجمے کی...
Brought up in the context of a very critical time of Islamic history, Imām Muḥammad Jalāl’uddīn Qāsimī (1866-1914) played a vital role to reform and purify the ongoing mindset of the Muslims in Syria in his time. He was a man believed in an independent thinking in the light of the Qur’ān and Sunnah. He taught the people to get rid of the backwardness and blind imitation (Taqlīd). For this purpose of his, he presented the works of the previous leading Islamic Scholars as they were. He was expert in various fields of knowledge like Qur’ān, Ḥadīth and their Sciences, Jurisprudence, Dialectic, etc. One of his masterpieces is his exegesis known as “Maḥāsin al-Tāwīl”. It is a great exegetical work; as most of the exegetical aspects are entertained in it. It has nine or seventeen volumes according to its two different editions, including a whole volume of preamble containing eleven Rules of Quranic Sciences. Although the critics object to his copying the long paragraphs of the prominent Islamic Scholars without commenting or editing and on his long discussions that deviate the reader from the actual purpose of the Holy Qur’ān, but to present the material in this way for the purpose of reformations of Muslims and to bring them back to the way of Salaf through their words, in that crucial time, justifies the significance of the work. In this article, the author probes to present the mythology adopted by Imām Qāsimī in his exegesis and its scholarly merits.
An Artificial Compressibility Formulation for Phase-field Model and its Application to Two-phase Flows With the advent of high-speed computers, computational methods have become a very useful tool for solving problems in science and engineering along with analytical and ex perimental approaches. The starting point of computational methods is the mathematical model, the form, and origin of which depends on the particular field of study. Many im portant physical processes in nature are governed by partial differential equations (PDE’s). For this reason, it is important to understand the physical behavior of the PDE’s. Also, the knowledge of mathematical character, properties, and solution of the equations are re quired. A proper mathematical model and a good numerical method can provide realistic answerstocomplexphysicalphenomenaforwhichanalyticalsolutionmaynotbeavailable in a finite time. Two-phase flow occurs in nature and many areas of physical and biological sciences like oil recovery processes (water and oil), blood flow (plasma and blood cell), mud-flow (wa ter and suspended particles), atmosphere and ocean system (air and water), cloud and fog (water and air). In dealing with the two-phase flow, an important consideration is how to modelthemovinginterface/surface. Nevertheless,thePDEsdescribingthetwo-phaseflow are highly nonlinear and stiff so it is difficult to solve them analytically and a numerical simulation is an alternate option. The numerical solution obtained may only approximate that of original problem or at least within some required tolerance of the true solution. However,accuratesimulationofmovinginterfacepresentsaproblemofconsiderablediffi cultyandisthereforeverychallengingfordevelopingnumericalmethodsusinglarge-scale computation. Also, the boundary conditions need a particular treatment near the moving interface during numerical simulations. Shocks in the compressible flows, vortex sheets in inviscid flows, and boundaries between immiscible fluids are some of the very known examples. Mathematicalmodelsadoptedinbothanalyticalandnumericalstudiesforavarietyoftwo phase flow with moving interface are classified into two types, i.e., sharp interface models and diffuse interface models. Sharp interface models like level set method assume that the interface has zero thickness. However, in the phase transition, the existence of a transition region introduces the idea of the diffuse interface that allows the interface to have finite thickness. Onetypeofdiffuse-interfacemodelsofparticularinterestisaphase-fieldmodel by an introduction of a phase-field variable that represents the interface. In this approach, the phase-field variable is a continuous function in space and time. Phase-field models are numerically attractive for not tracking the interface explicitly but can be obtained as a part of the solution processes. InordertosolveunsteadyincompressibleNavier-Stokesequations,severalnumericalmeth ods are developed, including the artificial compressibility method. In this research work, a numerical algorithm based on artificial compressibility formulation of the phase-field modelisusedforsimulatingtwo-phaseflowsproblems. Thecoupledhydrodynamicalsys tem consists of the incompressible Navier-Stokes equations and volume preserving Allen Cahntypephase-fieldequationarerecastintoconservativeformswithsourceterms,which are suited for implementing high-order and high-resolution discretization schemes. The Boussinesq approximation is used for buoyancy effects in the flow with moderately differ ent densities. The performance of the numerical method is demonstrated by its application to some benchmark two-phase flow problems.