دیہات میں قابل ڈاکٹروں کا فقدان
آج تک یہ المیہ ہی بنا ہوا ہے کہ شہروں میں زیادہ سہولتیں ہوتی ہیں اور دیہاتوں میں زندگی سہولتوںسے دور ہوتی ہے۔اسی بات کی وجہ سے لوگ شہروں کا رخ کرلیتے ہیںاور دیہاتوں میں پہلے سے بھی کم لوگ رہ جاتے ہیں۔جو افراد تعلیمی میدان کوفتح کرلیتے ہیںتو وہ دیہات میں رہنا پسند نہیںکرتے ،بوریا بستر سمیت شہروں کی طرف نکل پڑتے ہیں۔جیسے وہ پڑھائی ہی اس لیے کرتے ہیں کہ وہ شہروں کی طرف زندگی کو لے جاسکیں۔
ناطق نے بھی کہانی کے آغاز میں قاری کی توجہ اسی طرف مبذول کرائی ہے کہ دیہاتی زندگی بہت سادہ ہوتی ہے۔جہاں قابل ڈاکٹروں کا فقدان ہوتا ہے قابل ڈاکٹرز کا اس لیے کہ وہاں جو کوئی سیانا ہوتا ہے تو اسے علاج معالجے کیلئے مقرر کر لیا جاتاہے۔وہ اب چھوٹی موٹی بیماریوں بخار،زکام ،گلہ خراب جیسے امراض کا تو علاج کر سکتا ہے مگر بڑے مسائل کو حل کرنا اس کے لئے ناگزیر ہوتا ہے۔
دیہات میں خواتین اور ان کے نومولود بچوں کے حوالے سے بھی بہت سے مسائل کاسامنا رہتا ہے اور پورے علاقے میں زچگی سینٹر نہ ہونے کی وجہ سے اکثر انہیں جان سے بھی جانا پڑتا ہے۔ناول نگار نے بھی کہانی میں ایک سیانی عورت کا ذکر کیا ہے جو کہ دراصل خود کی پناہ کیلئے اس علاقے میں بسی اور پھر وہاں لوگوں کا علاج معالجہ کر کے گزارا شروع کردیااوراس علاج معالجے کا تجربہ اس عورت کو اس لیے تھا کہ اس کی ماں نرس تھی اور ماں کو دیکھ کر وہ کافی کچھ سیکھ چکی تھی۔
’’میری بیوی کا سارا علاج معالجہ اس نے کیا۔تمہیں تو ہماری مشکلوں کی خبر نہیں پر یہاں...
The aim of Hijrah is philosophically viewed as a way to spread Islam wisely. This was by Allah’s guidance and directive amidst the very bitter atmosphere in Makkah at that time against the early followers of the Islamic religion brought by the Rasulullah (pbuh). The prophetic Hijrah observed from the way it impacted Makkah and Madinah’s societies can be construed as a very important event that provided us with a variety of messages. It also acts as a reflection of our contributions to da’wah and the roles we can assume as good Muslims, by looking at what the Rasulullah (pbuh) and his companions had themselves sacrificed in the Hijrah. In short, Al-Hijra is the time when the Prophet Muhammad (pbuh) and his followers moved from Makkah to Madinah, where they set up the first Islamic state. Islam needed to expand and spread in the world, so the migration resulted in the expansion and preservation of Islam and Muslims. The Rasulullah (pbuh) migrated to Madinah when his enemies in Makkah mistreated him and his followers. It is a fact that the early Muslims in Makkah were greatly troubled by the unbelievers of Quraisy, the tribe of the Prophet (pbuh). The Rasulullah’s (pbuh) popularity in his da'wah efforts to invite his people to Islam was seen as threatening by the people in power in Makkah. The context of Hijrah was seen as urgent and timely as the unbelievers in Makkah had escalated the persecution against Muhammad (pbuh) and his followers. This persecution and a directive from Allah were the main reasons for the migration.
It is well known that the theory of inequalities is considered as one of the central areas of mathematical analysis. It has many important applications in numerous scientific fields. In recent years, considerable attention has been given to this field in order to find the generalizations, variations and applications of different inequalities. The aim of this thesis is to prove several inequalities involving some special functions in terms of a new parameter k > 0. We can call these functions as special k-functions. Here, we do work on k-analogue gamma, beta and psi functions. This research work consists of eight chapters. In first chapter, we prove the inequalities involving k and q, k-analogue of gamma and psi functions. In chapter 2, We derive some classical inequalities of Chebyshev, H¨older and Gr¨uss type involving gamma and beta k-functions. In chapter 3, we discuss some basic properties, recurrence relation and special cases of incomplete gamma and beta functions in terms of the parameter k > 0. Some inequalities involving the incomplete beta k-functions are also given. In chapter 4, we prove some Gr¨uss type integral inequalities involving the generalized RiemannLiouville fractional integral in terms of parameter k > 0. In Chapter 5, the Ostrowski type inequalities involving the left and right-sided Riemann-Liouville fractional integrals are established in terms of the parameter k > 0. From our results, the classical Ostrowski inequalities can be deduced as some special cases. In chapter 6, we introduce the k-analogue of Hadamard fractional integral with some properties. We prove different types of inequalities involving this newly defined k-fractional integral. In chapter 7, we define the k-deformation of the fractional integral of a function with respect to another function and the inequalities involving the newly defined k-fractional integrals are also be proved. In last chapter, we introduce some properties of beta k-distribution and present some inequalities involving beta k-distribution via some classical inequalities, like Chebyshev’s inequality for synchronous (asynchronous) mappings and H¨older’s inequality. Also, we discuss the inequalities for harmonic mean, variance and coefficient of variation of βk random variable involving the parameter k > 0. Finally, we give conclusion of the present study and recommendations for the future work. Additionally, published work of the author has also been attached at the end of the thesis.