سی حرفی ۔۸
(تن بیتاں وچ مکمل)
الف
آماہی، ’ب‘ بہت تھکی، ت تاہنگ تیری پئی مار دی اے
ث
ثابتی نہیں، ’ج‘ جگر باہجوں، ’ح‘ حالت گئی گھر بار دی اے
خ
خوشی گئی، ’د‘ دکھ بہتے، ’ذ‘ ذکر تے فکر سب یار دی اے
ر
رب وارث، ’ز‘ زاریاں دا، ’س‘ سک حنیف دیدار دی اے
ش
شوق لگا، ’ص‘ صادقاں دا، ’ض‘ ضعف نہیں کجھ نتار دا اے
ط
طوق پیا، ’ظ‘ ظالماں دا، ’ع‘ عاشقاں ہانگرا دار دا اے
غ
غم لگا، ’ف‘ فکر ڈاہڈا، ’ق‘ قسم مینوں شوق یار دا اے
ک
کون کٹے، ’ل‘ لکھ دتا،’م‘ مویاں نوں یار کیوں مار دا اے
ن
نیہہ ڈونگھی، چڑھی گھٹ کالی، اساں لنگھنا پہلڑے پور یارو
و
واہ کوئی نہیں، ہور راہ کوئی نہیں، ’ہ‘ ہڑ دا سماں ضرور یارو
لا
لا مکان دا پتہ دسے، ’ی‘ یاد نہ مان غرور یارو
ے
یار حنیف بھلائی دنیا، کیڈ پائے نیں عشق فتور یارو
سی حرفی۔۹
(ہک بیت وچ اٹھ حرف)
الف
الٰہی، میل ماہی نوں، ’ب‘ برے دن آئے نیں
ت
تلوار برہوں دی لٹکے، ’ث‘ ثواب کمائے نیں
ج
جوانی آخر فانی، ’ح‘حائل غم آئے نیں
خ
خوف حنیف وچھوڑے اندر، ’د‘ دکھاں دے سائے نیں
ذ
ذکر تیرے وچ رہندی، ’ر‘ رخ ویکھاں ماہی دا
ز
زیارت لکھ ثواباں، ’س‘ سوہنا چن چاہی دا
ش
شوخاں دے ناز نہورے، ’ص‘ صفا دل چاہی دا
ض
ضدی سنگ دل حنیف اے، مان حسن دی شاہی دا
ط
طواف کریں دن راتیں، ’ظ‘ ظالم کوئی خبر نہیوں
ع
عشق دے کٹھے عاشق، ’غ‘ غصہ تے جبر نہیوں
ف
فائدہ کی شکویاں سندا، ’ق‘ قسمت وچ اجر نہیوں
ک
کتھے چھڈ گیوں ماہی، کجھ حنیف نوں صبر نہیوں
ل
Explanation of Hadith literature is a very significant academic contribution of Muhadditheen since the dawn of this sacred source. Sunan by Abu Dawod (d. 275 A.H.) has its well reputation in field Hadith codification and it has taken a perpetual attraction of Hadith scholars for its interpretation. Molana Saharanpuri (d.1927A.D.)is a famous sub continental Muslim scholar who contributed a voluminous interpretation titled ‘Bazl al-Majhood’ in which he comprehensively explores different aspect of Hadith. He has given an exploration of intellecttu-al solutions to various doubts and objection in very lucid way. The article has been rendered to focus on the same issue and intends to deal with the method-ology adopted by Saharanpuri while resolving the insinuations regarding Hadith literature.
Isolation and Characterization of Plant Based Pesticides With the pace of constant population growth, the demand for sufficient and safer food is continuously increasing around the globe. On the other hand, global loss to crops due to pests, diseases and weeds is significantly high, warranting excessive use of pesticides, threatning environmnet and food safety. The most frequently used pesticides are synthetic posing several associated pre and post application problems such as residual toxicity that results in compromising the safety of food and causing insect resistance. An alternative approach may be to utilize plant’s secondary metabolites that plants actually synthesize in their defense against pests and pathogens. The major aim of current research study was, therefore, to identify, isolate, and characterize at biochemical and molecular level the potent insecticidal compounds from plant sources. To achieve this aim, seven plants namely Cinnamomum camphora, Eucalyptus sideroxylon, Isodon rugosus, Boenninghausenia albiflora, Calotropis procera, Daphne mucronata, and Tagetes minuta were selected. The crude and purified extracts of each of these plants were used to screen for their toxic effects against six economically important agricultural pests, each representing a separate insect order; Acyrthosiphon pisum (Hemiptera), Drosophila melanogaster (Diptera), Tribolium castaneum (Coleoptera), Spodoptera exigua (Lepidoptera), Schizaphis graminum (Hemiptera) and Bactrocera zonata (Diptera). Aphids were the most susceptible insects with 100% mortality observed after 24 h for all the plant extracts tested. Further bioassays with lower concentrations of the plant extracts against aphids revealed that the extracts from Isodon rugosus (Lamiaceae) (LC50 36.2 ppm and LC90 102.1 ppm) and Daphne mucronata (Thymelaeaceae) (LC50 126.2 ppm and LC90 197.5 ppm) found out to be the most toxic to aphids, A. pisum. These most toxic and active plant extracts were further fractionated in different solvent fractions on polarity basis and their insecticidal activity was further evaluated. While all fractions showed considerable mortality in aphids, the most active was the butanol fraction from Isodon rugosus with an LC50 of 18 ppm and LC90 of 48.2 ppm. Further bioactivity guided fractionation of the butanol fraction results in isolation of bioactive principle compound that was identified through various spectroscopic techniques as rosmarinic acid with LC50 0.2 ppm and LC90 5.4 ppm. There was no significant difference between LCs of purified rosmarinic acid and of commercial rosmarinic acid. Further, two key genes, hydroxyphenylpyruvate reductase and rosmarinic acid synthase, known to involve in biosynthesis of rosmarinic acid were targeted to clone from Isodon rugosus. Only one of these genes, hydroxyphenylpyruvate reductase was successfully cloned in Isodon rugosus which consequently will open the way to explore all other genes responsible for biosynthesis of rosmarinic acid. The molecular knowledge regarding biosynthetic pathway will help in biotechnological production of rosmarinic acid and to produce aphid resistant plants through genetic engineering approaches. Considering the high mortality rate in aphids to a significantly low concentration of the rosmarinic acid from Isodon rugosus, could be exploited and further developed as a potential eco-friendly plant-based insecticide against sucking insect pests.