Search or add a thesis

Advanced Search (Beta)
Home > اقبال کا تصور اخلاق-ایک فلسفیانہ جائزہ

اقبال کا تصور اخلاق-ایک فلسفیانہ جائزہ

Thesis Info

Access Option

External Link

Author

ندیم, جاوید اقبال

Program

PhD

Institute

University of the Punjab

City

Lahore

Province

Punjab

Country

Pakistan

Thesis Completing Year

2007

Thesis Completion Status

Completed

Subject

Philosophy & psychology

Language

Urdu

Link

http://prr.hec.gov.pk/jspui/bitstream/123456789/8327/1/3952H.pdf

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676725350401

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

یونس رضوی

یونس رضوی(۱۹۲۷ء) سیالکوٹ میں پیدا ہوئے۔ آپ نے ۱۹۴۹ء میں محکمہ انکم ٹیکس میں ملازمت حاصل کی۔ ۱۹۵۴ء میں فلم انڈسٹری لاہور سے رابطہ قائم کیا۔ آپ نے غزل ،نظم اور دیگر اصناف میں طبع آزمائی کی لیکن فلم انڈسٹری سے منسلک ہونے کی وجہ سے آپ کی زیادہ توجہ گیت نگاری کی طرف تھی۔(۷۵۵) ان کا شعری کلام ملک کے مختلف رسائل و جرائد میں چھپتا رہا۔ ایک شعری مجموعہ ’’میرے آنسو میرے گیت‘‘ ،زمزمہ پرنٹنگ پریس سیالکوٹ سے ۱۹۷۶ء میں شائع ہوا۔

یونس نے اردو شاعری میں کوئی نئی اور انوکھی راہیں دریافت نہیں کیں ۔بلکہ وہ اپنی شاعری میں روایت پسندنظر آتے ہیں۔ ان کی شاعری غم و اندوہ کی شاعری ہے۔ مگر ان کے ہر شعر کے پردے میں ایک ایسی چھپی ہوئی مضبوط انا کا وجود ملتا ہے۔ جو حوادث کی ستمرانیوں سے کبھی زخمی نہیں ہوتی۔ اور زندگی کا ہر آنے والا زخم انھیں پہلے سے کہیں زیادہ حوصلہ مند اوربا وقار بنا دیتا ہے۔

یونس رضوی کا نمونہ کلام ملاحظہ ہو:

شبِ سیاہ مکمل شبِ سیاہ نہ تھی

 

تمہاری زلف کا سایہ بھی اس میں ڈالا گیا

 

بساطِ عشق کی بازی تمام ہار گئے

 

مذاقِ عشق ہمارا بلند و بالا گیا

(۷۵۶)

 

غم زمانے کا متاع جسم و جاں تک آگیا

 

آگ کا شعلہ لپک کر آشیاں تک آگیا

 

کٹ تو جائیں گے شب و روز فراق ان کے بغیر

 

دکھ یہی ہے کہ رونق شام و سحر جاتی رہی

(۷۵۷)

 

گردش دوراں کے ہاتھوں اس قدر مجبور ہوں

 

زندگی کی ہر مسرت سے میں کوسوں دور ہوں

(۷۵۸)

۷۵۶۔یونس رضوی ،’’ میرے گیت میر ے آنسو‘‘،ص: ۵۱

۷۵۷۔ایضاً،ص:۴۱،۴۲

۷۵۸۔ایضاً،ص:۴۸

STANDAR PENILAIAN ASPEK PSIKOMOTORIK PENDIDIKAN AGAMA ISLAM

Psychomotor assessment is characterized by the presence of physical activity and performance skills by students. Unlike the students 'cognitive assessment, psychomotor assessment is based on the actualization and implementation of students' understanding of the various subject matter that has been obtained in the classroom. In some of the subject matter, psychomotor assessment determines the success of a lesson. This article is a literature research. This article aims to find students' psychomotor assessment format in Islamic Religious Education subject matter. The results of this study conclude that the assessment of the success of learners is not only determined from the cognitive aspects, but also from the affective and psychomotor aspects. Standard psychomotor assessment is made different from the cognitive assessment, that is by way of describing the test scores. Psychomotor assessment should be held by direct observation of learners, can not only practiced by written tests.  

Generic Urdu Nlp Framework for Urdu Text Analysis: Hybridization of Heuristics and Machine Learning Techniques

The internet was initially designed to present information to users in English. However, with the passage of time and the development of standard web technologies such as browsers, programming languages, libraries, frameworks, databases, front and back-ends, protocols, APIs, and data formats, the internet became a multilingual source of information. In the last few years, the natural language processing (NLP) research community has observed a rapid growth in online multilingual contents. Thus, the NLP community maims to explore monolingual and cross-lingual information retrieval (IR) tasks. Digital online content in Urdu is also currently increasing at a rapid pace. Urdu, the national language of Pakistan and the most widely spoken and understandable language of Indian sub-continent, is considered a low-resources language (Mukund, Srihari, & Peterson, 2010). Part of speech (POS) tagging and named entity recognition (NER) are considered the most basic NLP tasks. Investigation of these two tasks in Urdu is very hard. POS tagging, the assignment of syntactic categories for words in running text is significant to natural language processing as a preliminary task in applications such as speech processing, information extraction, and others. Named entity recognition (NER) corresponds to the identification and classification of all proper nouns in texts, and predefined categories, such as persons, locations, organizations, expressions of times, quantities and monetary values, etc. it is considered as a sub-task and/or sub-problem in information extraction (IE) and machine translation. NER is one of the hardest task in Urdu language processing. Previously majority Urdu NER systems are based on machine learning (ML) models. However, the ML model needs sufficiently large annotated corpora for better performance(Das, Ganguly, & Garain, 2017). Urdu is termed as a scared resource language in which sufficiently large annotated corpus for ML models’ evaluation is not available. Therefore, the adoption of semi-supervised approach which is largely dependent on usage of the huge amount of unlabeled data is a feasible solution. In this thesis, we propose a generic Urdu NLP framework for Urdu text analysis based on machine learning (ML) and deep learning approaches. Initially, we addressed POS challenges by developing a novel tagging approach using the linear-chain conditional random fields (CRF). We employed a strong, stable, balanced language-independent and language dependent feature set for Urdu POS task and used the method of context words window. Our approach was evaluated against a support vector machine (SVM) technique for Urdu POS - considered Abstract WAHAB KHAN Reg: No. 72-FBAS/PHDCS/S12 vi as the state of the art - on two benchmark datasets. The results show our CRF approach to improving upon the F-measure of prior attempts by 8.3 to 8.5%. Secondly, we adopted deep recurrent neural network (DRNN) learning algorithms with various model structures and word embedding as a feature for the task of Urdu named entity recognition and classification. These DRNN models include long short-term memory (LSTM) forward recurrent neural network (RNN), LSTM bi-directional RNN, backpropagation through time (BPTT) forward RNN and BPTT bi-directional RNN. We consider language-dependent features such as part of speech (POS) tags as well as language independent features such as N-grams. Our results show that the proposed DRNN-based approach outperforms existing work that employ CRF based approaches. Our work is the first to use DRNN architecture and word embedding as a feature for Urdu NER task and improves upon prior attempts by 9.5% in the case of maximum margin.