شکرانہ
ایس کتاب دی ترتیب تے تیاری وچ میرے نال جیہڑے جیہڑے مہرباناں نیں تعاون کیتا اے اوہناں وچ ممتاز قانون دان میاں سعید احمد ایڈووکیٹ ضلع کچہری اوکاڑہ، میاں وحیدالدین عرضی نویس ضلع کچہری اوکاڑہ، میاں مسعود الحسن گنج قادری ، حاجی منیر احمد الحمد آئل ملز آف قبولہ شریف ، پروفیسر محمد حسین لنگاہ ڈگری کالج بہاول نگر،سید انیس الرحمن گیلانی تے سب توں ودھ کے اعجاز احمد کمپیوٹر والیاں دا وی بے حد تعاون شامل حال رہیا تے بہاول نگر دی معروف شخصیت میاں علی احمد سنگلہ صاحب جنہاں دا رقم نال مالی تعاون مثالی رہیا۔
میں اوہناں بھراواں دا بڑا شکر گزار ہاں پئی انہاں دی مدد تے معاونت دے نال اے کتاب عملی طور تے چھپ کے ساڈیاں ہتھاں وچ موجود اے۔ اللہ پاک اوہناں دوستاں دے علم ، عمل تے عمر وچ خیرو برکت عطا فرماوے۔(آمین)
اقبال قادری
There is no doubt that poverty is one of the major phenomenon which destroys the entity of the human society and it is also one of the obstacles that prevents the ability and talent of humans to create and innovate in a suitable environment, it also causes the ignorance, mental and social tension, and it also desists human being to strengthen his family ties and make well settled position in the society, it affects adversely the life and mind of humans and forced him to commit crimes and violations in the society. We see that this phenomenon has affected the life of pre-Islamic poet and compelled him on raiding and robbery, so in this article we have tried to highlight the impact of poverty on the life of pre-Islamic poet.
Document classification is one of the important fields of text mining. At present, category identification using taxonomy for scientific publications is a manual task. These taxonomies support authors which contain a large number of classes organized in the form of hierarchy that becomes quite difficult to choose a relevant category or categories for their work. Due to the amalgamation of research work in multiple domains, the problem becomes a multi-label classification (MLC). MLC is broadly solved using two different approaches (Problem Transformation and algorithm adaptation). In literature, a lot of single label classifiers are available to deal with single label dataset such as Support Vector Machine (SVM), K Nearest Neighbour (KNN), Naive Bayes and many more, these classifiers have low accuracy on text datasets due to the similarity measures and inappropriate selection of features. Similar approaches exist, which transform the multi label dataset into binary classification problems such as Binary Relevance (BR), Classifier Chain (CC), Probabilistic Classifier Chain (PCC) and many more. These algorithms also have a very low accuracy for text data. The issue which has not given proper importance is the order in which the binary classifiers are executed. Algorithm adaptation techniques such as decision trees, SVM, Multi-label K Nearest Neighbour (ML-KNN) and neural network also exist for MLC but have low accuracy due to similar weightage of features for all labels and have never been tested for a scientific publication datasets. The algorithm adaptation approaches have never been studied with feature weighting as all the features may not play the same role for each label in the MLC. We argue that all the approaches to deal with MLC for scientific documents suffer from low accuracy.