Search or add a thesis

Advanced Search (Beta)
Home > Chemiluminescence and Electrochemiluminescence Studies of Biomedical and Pharmaceutical Measurands

Chemiluminescence and Electrochemiluminescence Studies of Biomedical and Pharmaceutical Measurands

Thesis Info

Access Option

External Link

Author

Hanif, Saima.

Program

PhD

Institute

National University of Sciences & Technology

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2017

Thesis Completion Status

Completed

Subject

Natural Sciences

Language

English

Link

http://prr.hec.gov.pk/jspui/bitstream/123456789/9400/1/Saima_Hanif_Virolog_%26_Immuno_HSR_2017_NUST_4.12.2017.pdf

Added

2021-02-17 19:49:13

Modified

2024-03-24 20:25:49

ARI ID

1676725716884

Similar


Early stage diagnosis plays a very crucial role in disease counteract in its very early stage before the appearance of the symptoms. Physician diagnosis depends on the outcomes arise from bio-chemical/diagnostic tests. Therefore, diagnostic methods plays vital role in right diagnosis of diseases on right time and assessing the quality of the drugs. Currently, optical measurement and chromatography based diagnostic assays are mostly used clinically. However, these assays encompass laborious sample preprocessing, complex readout instrumentation, , non-portable, time-consuming and expensive labeling methods. In contrast, electro analytical methods particularly chemiluminescence (CL) and electochemiluminescence (ECL) is one of the approaches that fit perfectly to satisfy the need of desirable characteristics of new diagnostic method. In this project, CL and ECL experiments had been accomplished using a BPCL Ultra-Weak Luminescence Analyzer. The photomultiplier tube (PMT) had been used in the BPCL Ultra-Weak Luminescence Analyzer. PMT was operated in current mode. A conventional three-electrode cell was used with a CHI 600 voltammetric analyzer to carry out electrochemical measurements. The experiments including voltamety, amperometry, ECL analysis, CL-flow injection analysis, and parameters for method validations had been done. The CL studies were performed for detection of creatinine, an important biomarker, used in clinical diagnosis and biomonitoring programs. A strong chemiluminescence was observed when creatinine reacted with H2O2 in the presence of cobalt ions, without any luminophore, enzymes and chromatographic separation. This was presented via CL-FIA method exhibiting a promising strategy for the sensitive quantification of urinary creatinine in clinical and toxicological laboratories. Hence, the CL studies have developed a novel, sensitive and selective method for detection of creatinine, to be used in clinical diagnosis and biomonitoring programs. ECL studies were designed in two parts, The first part explores new coreactants (Tripropylamine and Glucosamine) for typical luminophores and second part design a novel ECL sensor for biomedical analysis. Tripropylamine (TPrA), an eminent coreactant of tris(2,2''-bipyridine)ruthenium ion Ru(bpy)32+ ECL. The most popular coreactant for most luminol studies is H2O2, though it is very unstable and more sensitive to metal ions. In this study, a more stable TPrA was exploited as the coreactant of luminol ECL for the first time. It is anticipated that luminol–TPrA ECL system may be an attractive alternative to luminol–H2O2 ECL system for bioanalysis, immunoassays, DNA probe assays and aptasensors. Glucosamine is a bioavailable amino sugar and helps to relieve the symptoms of osteoarthritis. Glucosamine lacks chromophores (or fluorophores) which enable the sensitive detection with UV (or fluorescence). So, most available analytical methods are expensive, time consuming and need complex sample preparations. Our study investigated a new method for Glucosamine ECL analysis using another luminophore, Ru(Phen)32+ (Tris(1,10-phenanthroline)ruthenium(II) chloride). The method was validated by quantitative testing of glucosamine contents in nutraceutical products in the market. So, It shows good sensitivity, selectivity, cost effective and very fast as compared with the currently used method. Second part of ECL studies leads to development of a novel cathodic ECL sensor. It was fabricated by introducing a unique facile immobilization method of Tris (4,7-diphenyl-1,10-phenanthroline) ruthenium (II) dichloride Ru(dpp)32+ using graphite powder asimmobilization matrix. This sensor has extended potential window for ECL detecting species (DNA probes, numerous analytes such as S2O82-, oxalates and amine containing compounds)providing a novel approach for cathodic ECL as well as anodic ECL analysis in clinical chemistry and medical diagnostics. In conclusion, this project will contribute in the scientific world via a valuable addition of new analytical methods showing several logs of dynamic range, good sensitivity, fast and cost effectiveness. These characteristics provide advantages over assays that rely on radio isotopic labels, enzymatic activity, fluorescence, chromatographic and spectroscopic which have been applied in the biomedical testing and pharmaceutical analysis. However, it is foreseen that this project can be applied in the biomedical and pharmaceutical analysis for good quality and cost effective tests in future.
Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

الإنترنت

الإنترنت

120) نازك الملائكة – ويكيبديا – الموسعة الحرة .

http://66/02.9./04 search ? qccache: 6f8QnogzQ20j: or wikipedia.org/wiki%

(google) www.womengateway.com 121) بوابة المرأة

www.marmarita.com 122) نازك الملائكة

 

دار العلوم دیو بند کی تعلیمی و عصری خدمات کا تنقیدی مطالعہ

Purpose of the study was to reflect great contributions of Dar ul Uloom Deouband. After the end of Independence War 1857, three factors endangered the Muslims of India religiously and educationally. Firstly, the Christian missionaries who thought that after the political downfall Muslims would convert themselves to Christianity. Secondly, the missionaries were proclaiming blasphemy about Islam and the Holy Prophet Muhammad Sallalaho Alaha Wasalam. In this regard, William Mure wrote a notorious blasphemous book about which Sir Syed said, “Alas! We like to die.” Thirdly, in these circumstances the doubts of Muslims were increasing that Muslim may not be converted to Christianity but it may create hatred from Islamic ideology.  Just to cope up with these dangers, various educational movements came into being; one of them is Deouband Movement. As a result of the efforts by Dar ul Uloom Deouband, Muslims were able to save their Din and eman.

Synthesis, Characterization and In–Vitro Evaluation of Anticancer Potential of Chitosan–Coated Polyoxometalates Nanoparticles

Synthesis, Characterization and In–vitro Evaluation of Anticancer Potential of Chitosan–coated Polyoxometalates Nanoparticles Polyoxometalates (POMs) are discrete anions and have become significant in biomedical research due to their structural diversity which renders them highly active against bacterial, viral, cancer and HIV infection. In this study six different POMs were resynthesized and encapsulated within chitosan (CTS) through inotropic gelation technique. The synthesized nanoparticles were characterized in terms of their surface morphology, particle size and zeta potential. All nanoparticles were observed non–spherical with hollow surface having particle diameter below 200 nm. For each formulation the observed zeta potential value was in acceptable limits (> 25 mV). The lowest particle diameter (91 ± 4 nm) was recorded for CTS–TiW11Co with zeta potential 52.0 ± 5.21 mV. The entrapment efficiency, dissolution studies and release kinetics were estimated for all nano formulations. The CTS–P5W30 nanoparticles showed the maximum entrapment efficiency (92 ± 9 %) while the release pattern of POMs from nanoparticles was observed as diffusion and polymer surface erosion. Enzyme inhibition study on tissue non–specific alkaline phosphatase was determined where free POMs and their nanoparticles were analyzed and compared with the standard inhibitor. The inhibition constant (Ki) value for CTS–TiW11Co (10.2 ± 9 ng/mL) was ten–fold lower than the Ki of levamisole (137.5 ± 29 ng/mL). The anticancer potential of free POMs and CTS conjugated nanoparticles were studied on two different cancer cell lines including human cervical cancer cells (HeLa cells) and human breast cancer cells (MCF–7 cells). Furthermore, the toxicity of these compounds was studied on normal cells (vero cells). The compounds CTS–TiW11Co and CTS–P5W30 were very effective on HeLa cells with IC50 of 8.94 ± 2.33 and 7.26 ± 2.55 μg/mL respectively. While these compounds showed the minimum toxicity on vero cells. The CTS–TiW11Co and CTS–P5W30 compounds also showed the lowest IC50 values when tested on MCF–7 cells with 4.55 ± 1.98 and 6.36 ± 1.22 (μg/mL) correspondingly. Based on maximum potential of cytotoxicity on x cancer cells and low toxicity toward normal cells, CTS–TiW11Co and CTS–P5W30 were selected for further experiments. The CTS–TiW11Co and CTS–P5W30 were morphologically analyzed for any signs of apoptosis with DAPI staining. The treated cells (HeLa and MCF–7) were characterized by chromatin condensation, cell shrinkage and formation of apoptotic bodies. A microscopic analysis of the production of reactive oxygen species (ROS) was carried out with the help of fluorescent dye DCFH–DA. The dye was incubated with HeLa and MCF–7 cells after treatment with CTS–TiW11Co and CTS–P5W30 nanoparticles. The treated cells were characterized by glowing cells showing signs of lipid peroxidation and chromatin condensation. Furthermore, a DNA fragmentation analysis was carried out on HeLa and MCF–7 cells separately. The existence of DNA fragments had confirmed apoptosis in HeLa and MCF–7 cells treated with CTS–TiW11Co and CTS–P5W30 nanoparticles.