برگِ سبز است تحفہء درویش!
عموماًکسی کی جناب میں کوئی نذرانہ پیش کرتے ہوئے کہتے ہیں’’یہ فقیر کا ناچیز تحفہ ہے قبول فرمائیے‘‘۔کسی شاعر نے اس بات کو یوں کہا تھا……
ع برگِ سبز است تحفہء درویش
منیر شکوہ آبادی نے فارسی کے اس مصرعے پر گرہ بھی لگادی :
نذر جو میں نے کی ہے یہ درپیش
برگِ سبز است تحفہء درویش
نذر عابد صاحب اردو کے استاد ہیں، انھوں نے اپنے نعتیہ نذرانے کو ’’برگِ نعت‘‘ اسی استعاراتی پس منظر میں کہا ہے۔ کتاب کے نام ہی سے ظاہر ہے کہ شاعر ،نبیء کریم علیہ الصلوٰۃ والتسلیم کی بارگاہِ بے کس پناہ میں عاجزانہ ، انکسارانہ اور فدویانہ انداز میں تحفہ پیش کرنے کا متمنی ہے ،تاہم وہ اپنے تحفے کو آپﷺ کی شان کے شایاں ہرگز نہیں سمجھتا۔
نذر عابد کائنات کو اللہ سبحانہٗ تعالیٰ کا ایسا نگارخانہ تصور کرتے ہیں جس میں لحظہ بہ لحظہ رسولِ گرامی علیہ ا لصلوٰۃو السّلام کی تعریف و توصیف کا عمل جاری ہے۔ اللہ ربّ العزت کی طرف سے، حضور ﷺ کی جناب میں درود و سلام پیش کرنے کا حکم بھی دیا گیا ہے اور آپﷺ کے ذکر کو آپﷺ کے لیے بلند فرمانے کا بھی التزام کیا گیاہے۔ ایسی صورت میں اگر کائنات کو استعاراتی زبان میں ’’جہانِ نعت‘‘ کہا جائے تو یہ تکوینِ کائنات کی بہترین تعبیر ہوگی۔درج ذیل شعر میں سارے جہان کو نعت کا نام دینے سے شاعر کی یہی مراد ہے:
یہ زمیں نعت ہے، آسماں نعت ہے
سوچیے تو یہ سارا جہاں نعت ہے
سارے جہاں کی وسعتوں اور سرکارِ دوعالمﷺ کی عظمتوں و رفعتوں کے پیشِ نظر، شاعر کو نعت گوئی، انتہائی گرانقدر ، انتہائی مشکل اورحد درجہ نازک ،مقدس اور venerable معلوم ہوتی ہے۔اسی لیے نعت کہنے کے ہنگام، اپنی کم مائیگی کے ساتھ ساتھ...
Family is a blessing from Allah Almighty. Family is the first institution of society which plays pivotal role in the moral, ethical and social development of an individual. But our contemporary family system has confronted with a number of religious social, and normal problems. Such pruners( چھانٹنا کانٹے( have enharossed our society from all caused and diffusing the moral and ethical values of society. It resulted in digestion of our family system. The degrade of entropy and chose is day by day in our society. However Islam outlays complete code of family life. It understands that it is the building foundation of every society so a clear guide as to how family structure should be built is outlined in detail in Islam. It is Provide a sample to solve all kinds of problems in the light of life of Hazrat Muhammad
This work focuses on efficient, joint time-frequency analysis of time series data. Joint time-frequency analysis is based on the sliding window. There are two major contributions of this thesis. Firstly, we haveThis work focuses on efficient, joint time-frequency analysis of time series data. Joint time-frequency analysis is based on the sliding window. There are two major contributions of this thesis. Firstly, we have introduced a notion of “aggregate spectrogram (AS)” which is a unimodal distribution at each time instant. The AS is extremely useful and computationally efficient when we are interested in a few spectral features and not the entire spectrum. Properties/characteristics of the AS have been listed. A para- metric method, based on a second order autoregressive model of the signal, for the construction of the AS, has been described. Of all the existing spectral estimation tools, the AS has the least computational complexity. Based on the AS, instan- taneous frequency estimation for multicomponent signals with equal amplitudes has been achieved. The AS does not require Goertzel filters in dual tone multi frequency detection applications. The AS finds many potential application. A few examples are voice activity detection, edge detection, motion vector estimation etc. Secondly, the problem of estimating the instantaneous frequency and band- width for multicomponent signals with time varying amplitudes has been solved by employing a new peak detection algorithm. The algorithm has been shown to outperform existing algorithms when the frequencies and amplitudes of the multi- component noisy signals are time-varying. Other contributions of the thesis include: low computational cost algorithms for the sliding discrete Fourier transform, and algorithms for its extension to spectral interpolation through zero padding and window padding. A low cost, optimized iii split-radix FFT architecture for zero-padded signals is also proposed. The Wiener-Khintchine theorem (WKT) yields better spectral estimates of Gaussian signals as compared to the discrete Fourier transform (DFT). Higher order spectra find utility in case of additive colored noise or the signals are non- Gaussian. Due to high computational complexities, the WKT and higher order spectra are avoided in the sliding window based spectral analysis. We have devel- oped recursive forms of the WKT, bispectrum and trispectrum whose computa- tional complexities have reduced to linear, quadratic and cubic orders, respectively introduced a notion of “aggregate spectrogram (AS)” which is a unimodal distribution at each time instant. The AS is extremely useful and computationally efficient when we are interested in a few spectral features and not the entire spectrum. Properties/characteristics of the AS have been listed. A para- metric method, based on a second order autoregressive model of the signal, for the construction of the AS, has been described. Of all the existing spectral estimation tools, the AS has the least computational complexity. Based on the AS, instan- taneous frequency estimation for multicomponent signals with equal amplitudes has been achieved. The AS does not require Goertzel filters in dual tone multi frequency detection applications. The AS finds many potential application. A few examples are voice activity detection, edge detection, motion vector estimation etc. Secondly, the problem of estimating the instantaneous frequency and band- width for multicomponent signals with time varying amplitudes has been solved by employing a new peak detection algorithm. The algorithm has been shown to outperform existing algorithms when the frequencies and amplitudes of the multi- component noisy signals are time-varying. Other contributions of the thesis include: low computational cost algorithms for the sliding discrete Fourier transform, and algorithms for its extension to spectral interpolation through zero padding and window padding. A low cost, optimized split-radix FFT architecture for zero-padded signals is also proposed. The Wiener-Khintchine theorem (WKT) yields better spectral estimates of Gaussian signals as compared to the discrete Fourier transform (DFT). Higher order spectra find utility in case of additive colored noise or the signals are non- Gaussian. Due to high computational complexities, the WKT and higher order spectra are avoided in the sliding window based spectral analysis. We have devel- oped recursive forms of the WKT, bispectrum and trispectrum whose computa- tional complexities have reduced to linear, quadratic and cubic orders, respectively