دل محمد دلشاد (۱۸۰۰ء پ) گلی حکیماں محلہ سیداں (کوچہ بند) پسرور میں پیدا ہوئے۔ آپ اپنے فارسی اشعار میں ایک جگہ اس کی طرف اشارہ بھی کرتے ہیں :
یکے دو دست عجب تال آپس شش پہلو
بشش جہات بہ پنجاب گو کہ ثانی آں است
دلیل شادی دلشاد نام ایں شہراست
کہ پر سرور طرب بخش عالم دل و جاں است
(۱۱)
آپ فارسی اور اردو کے بہترین شاعر ہونے کے علاوہ عالمِ دین بھی تھے۔ دلشاد کے کلام میں حد درجے کی پختگی اور سادگی عیاں ہے۔ وہ اپنی تشبیہات اور استعارے حالاتِ حاضرہ اور دیگر نشیب و فرازِ حیات سے اخذ کرتے ہیں۔ ان کے کلام میں بے حد جاذبیت اور شرینی موجزن ہے۔ اُن کا زیادہ کلام قصائد اور غزلیات پر مشتمل ہے۔
قاضی عطاء اﷲ اپنی کتاب ’’شعرائے پسرور‘‘ میں دلشاد کے بارے میں رقمطراز ہیں:
دل محمد دلشاد پسروری انیسویں صدی کے معروف فارسی اور اردو شاعر ہیں۔ آپ نے متداولہ علوم و فنون اغلباً سیالکوٹ جیسے علم و حکمت کے شہر سے حاصل کئے۔ منطق ‘ سلوک‘ اخلاق‘ فقہ اور شعری علم میں کمال حاصل کیا۔ (۱۲)
مذکورہ بالا علوم میں مہارت دلشاد کے ایک فارسی شعر سے واضح ہوتی ہے:
از علم شعر و منطق‘ فقہ و سلوک و اخلاص
دارد تمام لیکن دلشاد زر نہ داد
(۱۳)
آپ کا زیادہ تر اردو کلام مفقود ہے۔ مختلف اردو تذکروں میں آپ کا کلام ملتا ہے۔ آپ کا فارسی دیوان ادارہ تحقیقاتِ پاکستان دانشگاہ پنجاب لاہور نے ۱۹۷۰ء میں شائع کیا۔ (۱۴) عشقِ مجازی‘ محبوب کی بے اعتنائی‘ بے وفائی‘ عشوہ وغمزہ وادا دلشاد کی اردو غزلوں کے موضوعات ہیں۔ حافظ محمود شیرانی نے اپنی تالیف ’’پنجاب میں اردو‘‘ میں دلشاد کی چند غزلیں نقل...
The study was carried out with the core objective about Islamic principles and teachings regarding welfare and its observance in ‘Pakhtun’ society under interpretative methodology of social sciences in ‘Gadhar-Hamza Khan, Shankar and Jamal Garhi’ of District Mardan. For collection of the relevant primary data 30 participants were purposely selected through convenient sampling method and then thoroughly interviewed while using interview guide as tool of data collection. After collection of the data, different themes were derived which were properly analyzed and presented in sequential orders. The study concluded that the most of the participant were lacking enough knowledge about calculation and distribution Zkwāt and ‘Ashr as they used and considered both term terms interchangeably. The study further concluded that priority was given to ‘Ashr rather Zkwāt. Awareness and observance about teachings of Islam in true spirit, inclusion of reading materials in curriculum of schools, colleges and universities, and deliverance of religious sermons by clerics about promotion of welfare activities were presented some of the recommendations.
Automated vertebrae analysis from medical images plays an important role in computer aided diagnosis (CAD). It provides an initial and early identification of various vertebral abnormalities to doctors and radiologists. Vertebrae segmentation and classification are important but difficult tasks in medical imaging due to low contrasts in image, noise and high topological shape variations in radiological scans. It becomes even more challenging when dealing with various deformities and pathologies present in the vertebral scans like osteoporotic vertebral fractures. In this work, we want to address the challenging problem of vertebral image analysis for vertebra segmentation and classification. In the past, various traditional imagery techniques were employed to address these problems. Recently, deep learning techniques have been introduced in biomedical image processing for segmentation and characterization of several abnormalities. These techniques are becoming popular in solving various medical image analysis problems due to their robustness and accuracy. In this research, we present a solution of vertebrae segmentation and classification problem with the help of deep learning approach. We present a novel combination of traditional region based level-set with deep learning framework in order to extract the shape of vertebral bones accurately; which would be able to handle the deformities in the vertebral bones precisely and efficiently. After vertebrae segmentation, we further extend the work to abnormal vertebrae classification with the help of deep learning approach. This novel framework would be able to help the medical doctors and radiologists with better visualization of vertebral bones and providing the initial automated classification of vertebrae to be normal or abnormal. The proposed method of vertebrae segmentation was successfully tested on different datasets with various fields of views. The first dataset comprises of 173 CT scans of thoracolumbar (thoracic and lumbar) vertebrae in sagittal view, collected from a local hospital. The second dataset comprises 73 CT scans of cervical vertebrae in sagittal view, also collected from a local hospital. The third dataset comprises 20 CT scans of thoracolumbar (thoracic and lumbar) vertebrae in sagittal view collected from spine segmentation challenge CSI 2014. The forth dataset comprises 25 CT scans of lumbar vertebrae in sagittal view collected from spine segmentation challenge CSI 2016. Lastly, we have utilized the same locally collected set of 173 CT scans of thoracolumbar (thoracic and lumbar) vertebrae and extracted in axial view to perform the segmentation task.For classification purpose, we have utilized the locally collected set of 173 CT scans of thoracolumbar (thoracic and lumbar) vertebrae as these include osteoporotic vertebral fractures in it. The details of these datasets have been presented in respective sections. We have achieved promising results on our proposed techniques. The evaluation of the segmentation performance on the datasets with various machines and field of views helped us to ensure the robustness of our proposed method. On validation sets of these datasets, we have achieved an average dice score of around 95% for vertebrae segmentation; and accuracy of above 80% for the vertebrae classification. The detailed results have been presented in the results section. These results reveal that our proposed techniques are competitive over the other state of the arts in terms of accuracy, efficiency, flexibility and time.