Contemporary approaches targeted towards precision medicine have shown significant achievements in most of the cancers by generating ‘big data’ across a range of high-throughput experimental and analytical podiums, yet significant problems remain. Integrative scrutinization of this data represents one of the greatest bottlenecks in cancer and other diseases. Surmounting this limitation necessitates integrative analysis of multiple layers of molecular information. Cancer represents a growing source and principal cause of morbidity and mortality in the human population, continuing to stymie clinical treatment efforts. Among various cancers, hepatocellular carcinoma (HCC) is now becoming the fastest growing cancer globally, mainly driven by the ageing HCV/HBV population and extremely limited therapies. There is currently considerable imprecision in optimal diagnostic and therapeutic strategies for HCC. The mounting assemblage of high-throughput data available in publicly accessible databases provides valuable source for generating preliminary in-silico data in support of novel conjectures. Bioinformatic initiatives that combine large amounts of cancer data represents an emerging frontier and are likely to play increasingly important roles. Current study endeavored to define an optimal and feasible method in order to gain new insights into HCC. Our comprehensive integrated analyses found seven novel HCC-specific circulating protein biomarkers including HSD11B1, SERPINC1, C8A, ADH6, CYP2A6, MBL2, UPB1, four highly deleterious HCC-associated Single-nucleotide polymorphisms (SNPs) including SCD1 R126S, SCD1 Y218C, BECN1 I403T, LC3B Y113C, seven miRNAs belonging to miR-17-92 cluster (has-miR-17-3p, has-miR-17-5p, has-miR-19b, has-miR-19a, has-miR-18a, has-miR-20a and miR-92) having a significant impact on drug resistance in HCC as well as uncovered new details about the potential Abstract xx role of circular RNA circ-DNMT1 in HCC. The present study well demonstrated that a comprehensive integrative informatics approach can be employed as an efficient screening stratagem to effectively extract worthwhile insights from a massive amount of complex, multidimensional molecular datasets.
پروفیسر مشیرالحق مرحوم دارالمصنفین اور پوری علمی دنیا میں جناب پروفیسر مشیر الحق مرحوم وائس چانسلر کشمیر یونیورسٹی کے سانحہ قتل کی خبر نہایت رنج و غم کے ساتھ سنی گئی، ان کو یرغمال بنائے جانے کی خبر ہی باعث تشویش اور اضطراب تھی، لیکن یہ امید نہ تھی کہ ایک حلیم الطبع، نرم شائستہ و شگفتہ مزاج انسان کے خرمن ہستی کو آتش چنار اس طرح جلاکر خاک کردے گی۔ ان کی زندگی ماہ و سال کے لحاظ سے بہت زیادہ نہیں ہے لیکن محنت، صبر، استقلال عزم اور مقصد کی یافت کے لحاظ سے یہ حیات مختصر بڑی قابل قدر اور قابل رشک رہی۔ ان کے علمی سفر کا آغاز دارالعلوم ندوۃ العلماء کی طالب علمی سے اور اختتام کشمیر یونیورسٹی کی وائس چانسلری پر ہوا، حق یہ ہے کہ قدیم و جدید کے خوشگوار اور متوازن امتزاج کی یہ دلکش مثال ہے۔ وہ غازی پور یوپی کے قصبہ بحری آباد میں پیدا ہوئے، کم عمری میں والد کے سایہ عاطفت سے محروم ہوگئے، تعلیم کے لیے دارالعلوم ندوۃ العلماء لکھنؤ آئے، یہاں سے عالمیت کی سند لی، انھوں نے انگریزی تعلیم پر بھی توجہ کی اور بڑے نامساعد حالات اور سخت معاشی پریشانیوں کے باوجود انھوں نے علم و فن کی تحصیل جاری رکھی ان کے علمی شوق و ذوق کو ان کے محبوب و مشفق استاذ مولانا عبدالسلام قدوائی ندوی مرحوم کی حوصلہ افزائی اور سرپرستی کبھی کم نہ ہونے دیتی، جامعہ ملیہ اسلامیہ سے بی اے اور علی گڑھ یونیورسٹی سے ایم اے کیا، ۶۱ء میں انھوں نے کناڈا کی میک گل یونیورسٹی سے پی ایچ ڈی کی سند بھی حاصل کی، دوران تعلیم ان کے قلب و نظر پر مولانا عبدالسلام قدوائی ندوی، پروفیسر محمد مجیب، پروفیسر سید عابد حسین اور پروفیسر الفریڈ کینٹویل اسمتھ کے نقوش خاص طور پر...
Islām is a complete code of life. Man is the vicegerent and representative of Allāh. The role of vicegerent and caliphate can only be fulfilled in a complete manner, when the system of the Islamic Caliphate is established. It is the duty of Muslims to endeavor for establishing such a system in the world. The caliphate is the political title of Islām. It is, actually, the sovereignty of Almighty God on the earth. God creates its sovereignty by selecting the pious people from the humankind. With the help of Caliphate, unity, strength and equality can be established in the Muslim world. Democracy is the system of government, which is based on the wishes of the majority of the people of a state. However, the real democracy is the one in which wishes of people are directly or indirectly catered. An ideal democracy is the one in which all affairs of the country are run with the consultation of all the people. If the affairs of any state are run by the majority of the people, then that state will move towards its destruction. Allāh says, “O Muhammad.. ! If you obey most of the dwellers of the earth they will lead you astray from Allah’s way. ” The affairs of the Islamic state must not run by the wishes of the majority nor the minority of the people, but, on the values of truth and justice. The author of this paper presents a critical and comparative study of the Islamic Caliphate and democracy, and concludes that it is the Caliphate and not democracy, which is the true Islamic system of government.
Registration is an important and fundamental medical image analysis technique for the alignment of two or more images of the same organ into a single more informative and ideal image for receiving precise and complementary information. The high quality and more informative images help surgeons to accurately locate region of interest while the surgery is in progress. Reliable, accurate, robust and computationally efficient image registration is necessary and is always required in clinical practices. However, the development of more accurate and efficient registration techniques in clinically acceptable time-frames is always a challenge. Most of the registration approaches consider entire image content and global features for the alignment of two or more images. Such approaches are tend to be computationally intensive and inaccurate because it requires full image matching. In medical image registration, computational efficiency and high accuracy may be achieved by restricting the registration process to subregions within the image being registered. Registration based on subregions and local features consider salient regions (interested regions) in the whole medical image. These approaches are computationally efficient and accurate because the registration needs to be performed only for the specific region. Automatic detection and extraction of interested subregions in medical images is always required in IGS and radiotherapy. However, automatic detection and registration of interested subregions in medical images is difficult and prone to errors due to complex and non-linear nature, and the availability of limited features for registration. This work presents an automatic feature based approaches for the rigid and deformable registration of medical images with the aim of high accuracy and computational efficiency. Instead of globally registering one image (moving image or source image) to another image (fixed image or target image), interested common subregions in two images are first automatically detected. After the detection of interested common subregions in both images, the detected common subregions are registered with local transformation parameters. The obtained local transformation parameters are then applied on source image, which recovers it according to the coordinates of target image. Finally, the obtained recovered source image is aligned with fixed target image with global transformation and correct registration with high efficiency is therefore achieved. All the experiments are performed on real 2D brain MRI images of patients with tumor. To demonstrate the computational efficiency, accuracy, reliability and robustness of the proposed approaches, extensive experiments are performed and the results are compared with existing standard registration methods. The performance of the proposed methods is evaluated using popular statistical metrics i.e. mutual information (MI), mean square error (MSE), peak signal to noise ratio (PSNR), sum of square differences (SSD), cross correlation (CC) and computation time. The experimental results sows that the obtained values of MI, PSNR and CC for the proposed methods are high than existing methods. Similarly, the obtained values of MSE, SSD and computational time for the proposed methods are low compared to existing methods. Thus it is obvious from the experiments that the proposed registration approaches outperform than the existing registration approaches in terms of computational efficiency and registration accuracy. Moreover, the proposed approaches automatically detect the desired common subregions in rigid and deformable medical images and perform successful registration on it.