Search or add a thesis

Advanced Search (Beta)
Home > Investigations on Adaptability of Some Silkworm Lines to Adverse Temperature and Humidity for Seed Cocoon Production.

Investigations on Adaptability of Some Silkworm Lines to Adverse Temperature and Humidity for Seed Cocoon Production.

Thesis Info

Access Option

External Link

Author

Hussain, Mubashar

Program

PhD

Institute

Pir Mehr Ali Shah Arid Agriculture University

City

Rawalpindi

Province

Punjab

Country

Pakistan

Thesis Completing Year

2011

Thesis Completion Status

Completed

Subject

Agricultural Technology

Language

English

Link

http://prr.hec.gov.pk/jspui/bitstream/123456789/14145/1/7236H.PDF

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676726516552

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

سپ تے فقیر

سپ تے فقیر

کسے پنڈ وچ اک فقیر رہندا سی۔ بہت غریب سی، اوہدا تے اوہدے گھر والی دا گزارہ خیرات والیاں چیزاں اتے ای ہوندا سی۔ اک دن اوہناں کول کھاون لئی کجھ وی نئیں سی۔ ایس لئی اوہ سویرے سویرے ای بھیک منگن ٹر پیا۔ فقیر کول اک کپڑے دا تھیلہ سی جس وچ اوس نے اک لوٹا تے اک کجہ رکھیا ہویا سی۔ کجے وچ وی اوہ لوکاں ولوں ملیا سالن پاندا تے لوٹے وچ پانی پا کے ضرورت ویلے پیندا سی۔ ہتھ وچ اوہ ہمیشہ سوٹی رکھدا سی۔ رستے وچ جاندے ہویاں اوس نوں اک سپ نظر آیا۔ اوس نے بہت تیزی نال سپ نوں کجے وچ بند کیتا۔ اوس دا منہ کپڑے نال بند کر کے اپنی بیوی نوں دے دتا۔ اوس نوں یقین سی کہ جدوں اوہدی بیوی کجہ کھولے گی تاں سپ اوس نوں ڈنگ مارے گا تے انج اوہ مر جاوے گی۔ جدوں اوس دی بیوی نے کجے دا منہ کھولیا تاں اوس نوں اندروں اک بہت قیمتی ہار ملیا۔ ایہہ ویکھ کے دونویں بہت حیران ہوئے۔

ایس خوبصورت ہار دی شہرت جدوں شہزادی تائیں اپڑی تاں اوس نے ہار ویکھن دی خواہش دا اظہار کیتا۔ ہار ویکھ کے شہزادی نے اوہناں نوں منہ منگے پیسے دے کے ہار خرید لیا۔ شہزادی ہار خرید کے بہت خوش سی۔ اک دن اوس ہار اپنے میز اتے رکھیا تے آپ کسے کم محل توں باہر چلے گئی۔ واپس آئی تاں اوس نوں حیرت ہوئی کہ میز اتے ہار نئیں بلکہ اک سوہنا جیہا بال منہ وچ انگوٹھا پا کے ستا ہویا اے۔ پہلاں تاں شہزادی بہت ڈری۔ وزیر نے آکھیا کہ تہاڈا ہار جادو دا ہار سی۔ دراصل اوہ ایہو بچہ سی جس نوں ظالم جادوگر نے ہار بنا دتا سی۔ ہن ایہہ دوبارہ اپنی...

Analisis Strategi Pemasaran Marketing Mix untuk Meningkatkan Penjualan Pada D’Besto Fried Chicken Pekanbaru

Marketing strategy is an effort to market a product, both in the form of goods and services, using certain plans and tactics to increase sales volume. One of the business development strategies is the implementation of a marketing mix strategy. Marketing is one of the most important factors in the continuity of a business, so it is very important for business people to pay attention to the marketing mix in their business. The purpose of this study was to determine how D'besto Fried Chicken Pekanbaru applies sales promotion. The data analysis technique used is market mix analysis. The marketing mix variables studied were product, price, place and promotion. The results of this study indicate that consumer decisions in purchasing D'besto Fried Chicken Pekanbaru are strategic location selection and products that are acceptable to the public. The recommendation of this research is that D'besto Fried Chicken Pekanbaru products should be more diverse and innovative in terms of packaging and online marketing and improve brand quality.

Temporal Human Action Detection in Long and Untrimmed Videos

With the advancement in information and communication technologies, sensing devices have now become pervasive. The pervasiveness of camera devices has enabled recording of video data at anytime and anywhere. It gives rise to a massive amount of untrimmed video data being produced, which consist of several human-related activities and actions including some background activities as well. It is important to detect the actions of interest in such long and untrimmed videos so that it can be further used in numerous applications i.e., video analysis, video summarization, surveillance, retrieval and captioning etc. This thesis targets temporal human action detection in long and untrimmed videos. Given a long and untrimmed video, the task of the temporal action detection is to detect starting and ending time of all occurrences of actions of interest and to predict action label of the detected intervals. Detecting human actions in long untrimmed videos is important but a challenging problem because of the unconstrained nature of long untrimmed videos in both space and time. In this work we solve the temporal action detection problem using two di erent paradigms: \proposal + classi cation" and \end-to-end temporal action detection". In proposal + classi cation approach, the regions which likely to contain human actions, known as proposals, arerst generated from untrimmed videos which are then classi ed into the targeted actions. To this end, we propose two di erent methods to generate action proposals: (1) un-supervised and (2) supervised temporal action proposal methods. In therst method, we propose unsupervised proposal generation method named as Proposals from Motion History Images (PMHI). PMHI discriminates actions from non-action regions by clustering the MHIs into actions and nonaction segments by detecting minima from the energy of MHIs. The strength of PMHI is that it is unsupervised, which alleviates the requirement for any training data. PMHI outperforms the existing proposal methods on the Multi-view Human Action video (MuHAVi)- uncut and Computer Vision and Pattern recognition (CVPR) 2012 Change Detection datasets.PMHI depends upon precise silhouettes extraction which is challenging for realistic videos and for moving cameras. To solve aforementioned problem, we propose a supervised temporal action proposal method named as Temporally Aggregated Bag-of-Discriminant-Words (TAB) which work directly on RGB videos. TAB is based on the observation that there are many overlapping frames in action and background temporal regions of untrimmed videos, which cause di culties in segmenting actions from non-action regions. TAB solve this issue by extracting class-speci c codewords from the action and background videos and extracting the discriminative weights of these codewords based on their ability to discriminate between these two classes. We integrate these discriminative weights with Bag of Word encoding, which we then call Bag-of-Discriminant-Words (BoDW). We sample the untrimmed videos into non-overlapping snippets and temporally aggregate the BoDW representation of multiple snippets into action proposals. We present the e ectiveness of TAB proposal method on two challenging temporal action detection datasets: MSR-II and Thumos14, where it improves upon state-ofthe- art methods. \Proposal + classi cation", requires multiple passes through testing data for these two stages, therefore, it is di cult to use these methods in an end-to-end manner. To solve this problem, we propose an end-to-end temporal action detection method known as Bag of Discriminant Snippets (BoDS). BoDS is based on the observation that multiple actions and the background classes have similar snippets, which cause incorrect classi cation of action regions and imprecise boundaries. We solve this issue bynding the key-snippets from the training data of each class and compute their discriminative power which is used in BoDS encoding. During testing of an untrimmed video, wend the BoDS representation for multiple candidate regions andnd their class label based on a majority voting scheme. We test BoDS on the Thumos14 and ActivityNet datasets and obtain state-of-the-art results.