Search or add a thesis

Advanced Search (Beta)
Home > Mode Identification Based Fault Diagnosis of Hybrid Systems

Mode Identification Based Fault Diagnosis of Hybrid Systems

Thesis Info

Access Option

External Link

Author

Muhammad Amin Akram

Program

PhD

Institute

Capital University of Science & Technology

City

Islamabad

Province

Islamabad.

Country

Pakistan

Thesis Completing Year

2016

Thesis Completion Status

Completed

Subject

Applied Sciences

Language

English

Link

http://prr.hec.gov.pk/jspui/bitstream/123456789/7603/1/Muhammad_Amin_Akram_Electrical_Engineering_HSR_2016_CUST_18.01.2017.pdf

Added

2021-02-17 19:49:13

Modified

2024-03-24 20:25:49

ARI ID

1676726650717

Similar


With technological advancements, modern engineering systems are improving in terms of performance, size and cost but at the expense of complexity; making their analysis and control extremely difficult. A fundamental issue regarding these systems is to ensure their safety and reliability due to their vulnerability to faults; owing to their complexity. The situation becomes even worse as the corresponding fault diagnosis algorithms are also becoming more complex and computationally expensive for the online implementation. The problem at hand is to design a simple, reliable and easy to implement fault detection and isolation scheme for these systems. One approach to design such a fault detection scheme for these complex engineering systems is to partition the system into simpler interacting subsystems and designing the desired fault diagnosis scheme for these simpler subsystems. Hybrid modeling provides us a platform to represent these complex engineering systems in simpler subsystems working collectively. Hybrid systems are those having both continuous and discrete dynamics. In these systems, discrete states are known as modes and switching between modes occurs on discrete events. In our proposed scheme, healthy and faulty modes are defined by estimating and analyzing continuous states of the system. This process of state estimation is performed by using Sliding Mode Observers (SMO). The monitoring of system modes is performed by designing a Deterministic Finite Automaton (DFA) that uses modes of the hybrid systems represented as symbols of a language, at its input. The proposed scheme is validated both through simulations and experimental data. Data for the experimental validation of the proposed scheme is acquired from an engine rig of a 1.3L production vehicle compliant with the On-Board Diagnostic II (OBD-II). Proposed scheme is easy to implement on account of being model-based. Instead of Kalman filter, SMO is used for the state estimation that is computationally cheaper. In general, there are two types of faults in hybrid systems; ones related to the current mode behavior and the others affecting the discrete evolution trajectory. In our design, we have detected both these faults using a single scheme by identifying and monitoring system modes. Moreover, detection and isolation of new faults can be easily accommodated by introducing new mode sequences in a fault set.
Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

مولانا غلام رسول مہرؔ

مولانا غلام رسول مہر
چودھری غلام رسول مہر کاانتقال ۷۲ برس کی عمر میں گذشتہ مہینہ لاہور میں ہوا۔ہماری بزمِ علم وادب کے اہم رکن تھے ۔ان کی شہرت کاآغاز ’’اخبار نویس‘‘ کی حیثیت سے ہوا۔ برسوں تک اخبار ’زمیندار‘ لاہور کی ادارت کرتے رہے۔ جب وہاں سے مولانا ظفر علی خاں کی پالیسی سے اختلاف کے باعث وہ اور عبدالمجید سالک الگ ہوئے تودونوں نے مل کر بڑی آب وتاب اور طمطراق سے روزنامہ ’’انقلاب‘‘ نکالنا شروع کیا۔مہر صاحب افتتاحیہ لکھتے تھے جو بڑا پر مغز، مدلل اور سنجیدہ ہوتاتھا اور سالک ’’افکار وحوادث ‘‘ لکھتے تھے،جومزاحیہ ہوتے اور اردو زبان وادب کے چٹخاروں کے باعث بڑی دل چسپی اور شوق سے پڑھے جاتے تھے۔ مہرصاحب کاقلم بڑاشگفتہ تھا، جو کچھ لکھتے تھے بڑے غورو فکر اور مطالعہ کے بعد لکھتے تھے۔وہ صرف اخبار نویس نہیں بلکہ صفِ اوّل کے ادیب مصنف اور محقق بھی تھے۔مرزاغالب اورحضرت سید احمدشہید ان کے تحقیقی مطالعہ کے خاص موضوعات تھے۔ان پرانھوں نے نہایت وقیع اورقابل قدر کتابیں لکھی ہیں۔ مولانا ابوالکلام آزاد کے ساتھ ان کی عقیدت ارادت کے درجہ کوپہنچی ہوئی تھی۔اس ارادت کے باعث ان کو قرآن مجید کے ساتھ بھی بڑا شغف اوراس کاخاص ذوق تھا۔افسوس ہے تقسیم کے بعد پاکستان میں ان کو وہ عروج حاصل نہیں ہواجس کے وہ مستحق تھے۔وہاں کی سوسائٹی میں ان کی شخصیت کچھ دب سی گئی تھی۔آخرعمر میں ان کی معاشی پریشانیاں بہت بڑھ گئی تھیں، جس کا اندازہ ان خطوط سے ہوتا ہے جو ’’نقوش کے مکاتیب نمبر میں چھپے ہیں۔اﷲ تعالیٰ مغفرت اور دارِ آخرت کی راحتیں نصیب فرمائے۔ [دسمبر ۱۹۷۱ء]

شاہ ولی اللہ کی نظر میں مسالک فقہیہ کا تعارف

Wealth in history is remembered in the name of the Abbasid’s, golden era. In this era of economic and intellectual empire blossomed in every way. Edit the narration started and completion is the result of the round. Hadith aortal examine the art of perfection reached in the same period. Greek Studies moved into Arabic. According to a group of scholar's Asulyyin (اوصنییل )the first code of Islamic Jurisprudence wrote by Imam Shafi"Split"(ارلاےئ (is not currently forming, came to limelight. In this era of Islamic history, the main issue was the establishment of the four Reformative schools and his publicity

Deposition of Indium and Aluminum Nitrides Thin Films Using Plasma

Indium nitride (InN) thin films are deposited by using pulsed DC magnetron sputtering technique on glass substrates. The power range is varied from 100 W to 150 W. The structural evaluation of deposited films is carried out by utilizing X-ray diffraction (XRD). The result of XRD spectra disclose polycrystallinity of InN peaks having preferred orientation towards the c-plane. The sputtering power is increased from 100 W to 130 W, consequences the significantly improved crystal quality of InN. Though, with additional upsurge in the power up to 150 W, there is reduction in crystallinity of the film. The morphological analysis of the results from SEM indicates agglomeration of minor grains into greater ones through the increase of the power. The variation is observed in the band gap and electrical resistivity of InN films, with changing sputtering power. These results are found to be associated with variations in the crystallinity of InN at various sputtering powers. In order to support our results, the optical properties of InN films have also been calculated by the first principle method to support our results about disparity in band gap. The deposition of InN films on Si (100) substrates by using pulsed DC magnetron sputtering was performed. Effects of varying sputtering power and Ar-N2 flow ratio on the structural, morphological, and optical properties of indium nitride (InN) films were investigated. The structural characterization indicated nanocrystalline InN film with preferred orientation towards (101) plane that exhibited the optimum crystalline quality at 130 W and for 40:60 Ar-N2 ratio. The surface morphology of InN as observed through FESEM contained irregular shaped nanocrystals with size that increases with higher sputtering power and Ar: N2 flow ratio. The evaluation of optical properties of InN films is carried out at room temperature using ellipsometer. The band gap of InN was decreased with the increase of sputtering power to 130 W whereas an increase in the band gap was noticed with increase of the Ar: N2 flow ratio. Thin films of Aluminum nitride (AlN) with precise oxygen content are fabricated on silicon substrates. The effect of structural variation upon the optical properties is studied. The dependency of film morphology on the deposition process parameters is also studied. Mixtures of argon (Ar) and nitrogen (N2) gases are used to sputter AlN target in RF magnetron sputtering system. The variation of refractive index ranging from 1.6 – 2.0 at xiii 400 nm is studied by regulating the sputter gas (Ar and N2) flow rate ratio. The consequential refractive indices are linked with oxygen content and density of the AlN thin films. A Distributed Bragg Reflectors (DBR) is fabricated and adjusted for ultraviolet-A reflectivity by alternating the pairs of AlN thin films using a noticeable combination of low-n and high-n. The optical properties of DBR is studied. The structural transformation outcomes in the DBR stack on the performance of the device is deliberated. The DBRs show a negligible extinction coefficient (k) along with the exploiting control of oxygen amalgamation with a single sputtering target. Deliberating to the demand for high-performance silver-based telescope mirrors, efforts are being made to develop surface coatings that guard the mirrors from deterioration. Aluminum nitride (AlN) is utilized for numerous optical coatings. It is an important well-suited, candidate for silver-based mirror protective coatings due to its high optical transparency and mechanical toughness. Nevertheless, conferring to our best information, AlN with controlled oxygen content has never been used as a protector for silver mirrors. In this study, various AlN protective coatings are deposited by utilizing RF magnetron sputtering system. Explicit controlled amounts of oxygen are deliberately announced to get protective layers with various refractive indices ranges from 2.1nm to 1.6 nm (i.e., high ~2.1, medium ~1.8, and low ~1.6 at 400 nm). The intended AlN protective layers are applied to two types silver mirror structures, having two different antioxidation layers. The performances of mirror structures are evaluated in relation of optical reflectivity and structural analysis. The environmental testing is applied in a controlled atmosphere at 80C with ~80% relative moisture. Complete investigation on the mirror samples before and after the environmental testing specifies that AlN-based protective layers with medium refractive index performed best in comparison with AlN having higher or lower refractive index. Furthermore, the thicker AlN protective coatings with medium refractive index are best for the protection of silver mirrors according to figure of merit. We recommend that the advantages of the best AlN barrier coating with specific refractive index are probably allied with the exclusive optical, chemical, and structural features based on an exceptional nitrogen/oxygen ratio.