تعلیم نسواں
علم جہاں پہنچتا ہے اندھیرے سے نکال کر روشنی میں لے جاتا ہے ،ظلمت سے ضیاء کی طرف روانگی ہو جاتی ہے، جہالت سے شعور وآگہی کا سفر شروع ہو جاتا ہے۔ علم ایک ایسی دولت ہے جو انسان کواوجِ ثرّیا تک پہنچا دیتی ہے۔ علم ایک ایسازینہ ہے جس سے معرفتِ الٰہی کے محل کی طرف رسائی ممکن ہے۔ علم کے زیور سے مرصعّ شخص معاشرے کے ماتھے کا جھومر ہوتے ہیں۔ علم کی حقیقتوں سے آشنائی ایک عظمت ہے اس طرح عورت علم کے زیور سے مزیّن ہوگی تو معاشرہ سنور جائے گا۔
مردوں کی بھی تعلیم ضروری تو ہے مگر
پڑھ جائے جو خاتون تو نسلیں سنوار دے
تعلیم نسواں سے مراد عورتوں کی تعلیم ہے۔ مردوں کی طرح عورتوں کے لیے بھی حصول علم بہت ضروری ہے۔ عورت اور مرد زندگی کی گاڑی کے دو پہیے ہیں۔ ان دونوں پہیوں کا صحیح ہونا بہت ضروری ہے۔ ورنہ زندگی کی گاڑی ٹھیک طرح سے چل نہ سکے گی۔ کوئی قوم اس وقت تک ترقی نہیں کرسکتی جب تک اس قوم کی عورتیں زیورِ تعلیم سے آراستہ نہ ہوں۔
نبی کریم صلی اللہ علیہ و آلہٖ وسلمکا ارشاد ہے کہ’’ علم حاصل کرنا ہر مسلمان مرد اور عورت پر فرض ہے۔‘‘ اس حدیث مبارکہ سے مرد اور عورت دونوں کی خاطر علم کی اہمیت واضح ہوتی ہے۔ آپ صلی اللہ علیہ و آلہٖ وسلمنے اپنی تعلیمات سے آگاہی کے لیے عورتوں کے لیے بھی ہفتے میں ایک دن مقرر کیا تھا۔ اس کے علاوہ ازواجِ مطہرات بھی عورتوں کو دین کی باتیں سکھایا کرتی تھیں۔ دانائوں کا قول ہے کہ’’ ایک مردکی تعلیم ایک فردکی تعلیم ہے، جبکہ ایک عورت کی تعلیم ایک خاندان کی تعلیم ہے‘‘ عورت کی آغوش ہی بچے کی پہلی درسگاہ ہے۔ یہ جو کچھ اپنی ماں...
Sūnan-ul-Tirmizi is an encyclopedia of Ahādith-ul-Ahkām. Imam Tirmizi is the Mohadith who divided hadiths into Sahih and Zaeef for the first time. He accepts or rejects a hadith on the base of Taāmul-e-Ummah. He is only the Mohadith who established the terminology of “Filbāb” in which he gives the words of hadith from a Sahabi and mentions the names of all other sahabies who are rawi of the same hadith. There are many sharh of Tirmizi written by Muhadiseen. Among them Tuhfat ul Ahwazi is famously written by Molana Abdul Rahman Mubarakpuri. He explores the terminologies of Sonan-e-Tirmizi. He discussed uloom ul hadith, books of hadith, Shoroh-ul-hadith, Asma-ul-rejal and ilm ul ansab etc. He mentions tafsiri aqwal, fiqhi problems and usool-e-hadith. He also solved the Tasaholat-e-Tirmizi in validity (sihat) and unvalidity (zouf). He is the first mohadith who tried to find the words of hadith from other sahabies whose names are given in “Filbab”. He did it but could not find the words of 87 ahadith for which he used the term “Lam aqif alaih” and 417 ahadith for which he used the term “Le Yonzar man akhraja haza ul hadith”. This thing makes it distinct from other shoroh of Sūnan-e-Tirmizi. He depends on the usool-e-hadith of forefather Muhadiseen and he did not establish his own usool hadith.
Genes provide instructions for the synthesis of functional products, such as, proteins. Gene expression develops the functional products using the instructions encoded in the genes. Gene regulation controls the process of gene expression in a way that it can regulate the increase or decrease of the gene expression resulting in the synthesis of specific functional products. It also controls when or when not to express a particular gene to produce a particular protein. Collection of regulatory elements, such as, genes and their interconnections showing the gene expression levels, are visualized as a Gene Regulatory Network (GRN). GRNs act as a tool for understanding the causation relationships between the genes and proteins representing complex cellular functionalities. Computational biology has laid its main focus nowadays on the reverse engineering or reconstruction of GRNs from gene expression data to decode the complex mechanism of the cellular functionalities. These efforts have resulted in improved and more precise diagnostics and therapeutics. Microarray technology of analyzing gene expressions calculates expression of thousands of genes simultaneously under different conditions, like, control or disease conditions. It helps in identifying over-expressed genes likely to be associated with the disease. Multiple approaches to reconstruct GRNs from gene expression data, apply various techniques, such as, distance measures, correlations, mutual information algorithms, dynamic and quantitative probabilities. These approaches result in identifying symmetric and diagonal gene pair interactions. Symmetric gene pair interactions cannot be modeled as direct activation and inhibition interactions. Moreover, diagonal nature shows that a gene cannot self-regulates itself, which is also contradictory with the true nature of gene pair regulatory interactions. Compromising the true asymmetric and non-diagonal nature of the actual gene pair regulatory interactions, can lead to incomplete and inferior predictions. To our knowledge, no such complete model exists to generate GRN representing all possible network motifs between gene pairs, such as, activation, inhibition and self-regulations. The proposed approach, named as, Multivariate Covariance Network (MCNet), aims at reconstructing GRN applies multivariate co-variance analysis and Principal Component Analysis (PCA) to identify asymmetric and non-diagonal gene interactions. The GRN developed using the MCNet approach holds all the possible network motifs, representing all kinds of gene-pair regulatory interactions (i.e., positive and negative feedback loops as well as self-loops). The asymmetry is achieved by computing the distance measure of the genes with respect to the eigen values of the related genes showing variable behaviors under different conditions. PCA in the MCNet approach selects gene-pair interactions showing maximum variances in gene regulatory expressions. Asymmetric gene regulatory interactions help in identifying the controlling regulatory agents, thus, lowering the false positive rate of interacting genes by minimizing the connections between previously unlinked network components. The performance of the proposed approach, MCNet, has been evaluated using a real data set as well as three synthetic and gold standard data sets. The MCNet approach predicts the regulatory vi interactions with higher precision and accuracy as compared to some currently state-of-the-art approaches. The results of the MCNet approach using the real time-series RTX therapy data set identified self-regulatory interactions of the differentially expressed (DE) genes with 80.6% accuracy. The MCNet approach predicted the gene regulatory interactions of the time-series synthetic Arabidopsis Thaliana circadian clock data set with 90.3% accuracy. The self-regulatory interactions identified in the RTX therapy and synthetic Arabidopsis Thaliana data sets are further verified from the literature because gold standards are not available for these data sets. Gold standard DREAM-3 and DREAM-8 in silico data sets, are also used to evaluate the performance of the proposed approach, while comparing with some existing approaches. The DREAM-3 in silico E-coli gold standard data set does not contain any self-regulations, while the DREAM-8 in silico phosphoproteins gold standard data set hold self-regulations. The results demonstrate the enhanced performance of the MCNet approach for predicting self-regulations only in the DREAM-8 in silico phosphoproteins data set with 75.8% accuracy. The MCNet approach for reconstructing GRN identifies direct activation and inhibition interactions as well as self-regulatory interactions from microarray gene expression data sets. The generated GRN can constitute positive and negative feedback loops as well as self-loops to demonstrate true nature of the gene-pair regulatory interactions. In future, it is aimed to enhance the functionality of the MCNet approach by modeling the dynamics of the GRNs, such as, oscillations and bifurcations towards steady state