Search or add a thesis

Advanced Search (Beta)
Home > Operational Design of a Cellular Manufacturing System

Operational Design of a Cellular Manufacturing System

Thesis Info

Access Option

External Link

Author

Tariq, Adnan

Program

PhD

Institute

National University of Sciences & Technology

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2010

Thesis Completion Status

Completed

Subject

Applied Sciences

Language

English

Link

http://prr.hec.gov.pk/jspui/handle/123456789/370

Added

2021-02-17 19:49:13

Modified

2024-03-24 20:25:49

ARI ID

1676726812011

Asian Research Index Whatsapp Chanel
Asian Research Index Whatsapp Chanel

Join our Whatsapp Channel to get regular updates.

Similar


Cellular Manufacturing (CM), which contains the flexibility of Job-Shop and at the same time has a higher rate of production as flow lines, is proving to be a useful substitute for the production carried out in batches. In spite of the fact that there are so many benefits associated with CM but designing CM, for real world problems, is a very complex job. Since the main task in designing a CM is grouping of machines into cells and parts into corresponding families, therefore, most of the research carried out so far has considered the Cellular Manufacturing System (CMS) design as a Machine-Part grouping problem only and focus on the operational aspects of the design has been very little. Once the Machine-Part grouping stage is over, scheduling of the system is supposed to be the next stage in completing the operational design of a CMS. This is the stage where important production related information; such as processing sequence and processing time is taken into consideration. Scheduling is very essential as it enhances productivity and maximizes the usefulness of a given manufacturing system by utilizing the available resources in an optimized manner. Therefore, alongside Machine-Part grouping, scheduling is of paramount importance too, as it ensures proper utilization of resources. In order to carryout a complete operational design of CMS, a two stage methodology has been developed in this research. First, the problem of Machine-Part grouping (CMS design) is solved, and then sequencing and scheduling of parts on machines is carried out. Since each cell is like a Job-Shop, therefore the scheduling part of the problem is solved using a similar approach as in case of a Job-Shop scheduling problem (JSSP). Separate hybrid tools, for solving Machine-Part grouping problem and Job-Shop Scheduling Problem (JSSP), has been developed by combining Genetic Algorithms (GA) with Local Search Heuristics (LSH). Each tool’s effectiveness has been verified, separately, by solving a number of benchmark problems from literature. Finally, the two tools are combined in such a manner that the output of the Machine-Part grouping serves as an input to the tool developed for the scheduling of Job-Shop. Final outcome of the program is a cellular arrangement of the system (machine groups and corresponding part families) and detailed information about the sequencing and scheduling of the system. The development of two effective hybrid GA based tools, for Machine-Part grouping and Job-Shop Scheduling, and their combination are the main contributions of this research.
Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

طاقت کا سرچشمہ

طاقت کا سرچشمہ

طاقت کا سر چشمہ عوام ہوتے ہیں ۔جس دن انہیں اپنی طاقت کا احساس ہو گیا تو ایسا انقلاب برپا ہو گا ۔اس دن وڈیرے جاگیردار سرمایہ دار پیسے کے بل بوتے پر سیاست کر نے والے اسٹیبلشمنٹ اور اس کے گماشتے نا م نہاد عوام کی لاتوں سے ایسے اچھالے جائیں گے ۔

جب تخت گرائے جائیں گے جب تاج اچھالے جائیں گے

اب ٹوٹ گریں گی زنجیریں اور زندانوں کی خیر نہیں

                                                                                                                                فیض احمد فیض ؔ

 

Agile Practices and Intention to Stay: Mediation Effects Through Job Characteristics

Agile methods of software development have been used widely over the last decade, and the majority of organizations have now embraced them in their projects. Thus, the current study explored the positive influence of agile practices on individuals' intentions to stay at their employment. In accordance with this objective, the study looked at the role of job characteristics in mediating the association between agile methods and intention to stay. A sample of 486 employees was contacted through online survey using the Google Forms platforms during the period of September 2021 who practice the agile methods while working at their organizations. They provided data on the questionnaires of agile practices, job characteristics, and intention to stay. Findings postulated that agile practices have significant impact on employees’ intention to stay. Results further reported the significant mediation through job characteristics between agile practices and intention to stay. Findings showed that the job when is designed on feedback, skill variety, job autonomy, task identity and task significance mediate an impact of practising agile methods on intention to stay.

Expression, Purification and Charaterization of Recombinant Human Bone Morphogenetic Protein 2

Bone Morphogenetic Proteins (BMPs) are categorized as subfamily of Transforming Growth Factor beta and perform important functions in diverse cellular processes from embryo to adult life. They are important regulators of bone morphogenesis and proved their therapeutic potential in spine fusion and ortho/maxillofacial surgeries. Two members of the BMP family, that is BMP2 and BMP7 had been approved by FDA as recombinant therapeutic drugs for human use. Normally, BMPs are active in low doses (5-20ng/ml) but commercially available are used in high doses, up to 40mg in an in-vivo translational procedure. The high dose is required due to the short systemic half-life of BMP2 and single dose is not adequate to stimulate the osteo-inductive response. Currently, the commercially available recombinant human BMP2 (rhBMP2) is been produced from mammalian expression system mainly CHO and HEK cell lines, with a collagen sponge as a carrier and is highly expensive. Despite been having advantage of biologically active protein, mammalian expression system is associated with high cost of production and low yield. Alternate approaches for the cost effective recombinant production of proteins for the successful therapeutic applications is the prokaryotic expression system. In prokaryotic system, B. subtilis and E. coli are the two most widely used expression hosts. B. subtilis has the advantage of secreting proteins directly in the culture medium and the production of BMP2 had not been reported previously. Whereas, E. coli has been known for the high yield but major disadvantage of E. coli is that, majority of the heterologous proteins are produced in an inactive form as inclusion bodies and BMPs had always been produced recombinantly in this way which were refolded in-vitro. So, in case of E. coli, soluble production with SUMO fusion technology is also a novelty in the recombinant production of native BMP2. In the current study, for the cost effective production of rhBMP2 in B. subtilis expression system, BMP2 gene was cloned in the form of monomer and a covalently linked homodimer containing glycine-serine rich linker into pHT43, B. subtilis expression vector. After confirmation of positive clones with colony PCR and restriction analysis, sequencing was performed to rule out any possible mutation during amplification. The recombinant plasmids were transformed in SCK6 and WB600 strains of the B. subtilis for the secretory expression. The expression was optimized in three different media that is LB, 2xYT and 2X LMAL at 30 and 37°C. Maximum expression of ~35% of total secretory protein for rhBMP2 monomer was observed at 30°C in 2xYT medium with SCK6 strain. The optimized conditions for IPTG concentration and fermentation time was 0.6mM of IPTG for 20 hours of fermentation. Auto induction with lactose was also optimized for large scale production in bio-fermenter and maximum expression was observed at 6mM of lactose for 24 hours of fermentation. The rhBMP2 homodimer was grown at pre-optimized conditions of rhBMP2 monomer for media, strain and temperature. However, IPTG concentration and fermentation time was optimized separately. Maximum expression of ~25% of total secretory protein was observed at 0.8mM of IPTG for 8 hours of fermentation and with lactose the optimized conditions were 10mM of lactose for 16 hours of fermentation. The rhBMP2 monomer and homodimer were characterized by western blotting with anti-human BMP2 antibody and Native PAGE analysis for confirmation of the homodimer. Both the protein were then purified with anion exchange chromatography using FPLC system. The specific elution concentration for rhBMP2 monomer and homodimer were 0.9M and 0.6M of NaCl respectively. The final yield of 1mg and 1.84mg with 90 and 80% purity for rhBMP2 monomer and homodimer respectively was achieved from 200ml of culture supernatant. The purified proteins were then further characterized for their biological activity by alkaline phosphatase (ALP) assay on C2C12 mouse myoblastic cell line. Different doses of rhBMP2 monomer and homodimer i.e. 0, 50, 100, 200 and 400 ng/ml were tested and maximum ALP activity was observed at 200ng/ml. Results showed dose dependent increase in the ALP activity and a decline in the activity was observed at higher doses. The rhBMP2 standard was used as positive control whereas, DMEM medium without rhBMP2 was used as negative control. Our results showed that biological active rhBMP2 has been produced as a secretory protein in B. subtilis and in dimeric configuration. However, the purification of the protein from large volume of culture supernatant was difficult and the final yield was low. So, the system was not considered to be cost effective for bulk production. As an alternate strategy, E. coli expression system was used for cost effective production of rhBMP2. Previously rhBMP2, was produced in inclusion bodies as biologically inactive protein which was refolded in-vitro. So, for the soluble expression of rhBMP2, SUMO fusion technology was opted and a fusion gene was constructed with human SUMO3 fused to the N-terminal of human BMP2. The fused gene was cloned in pET21a (+) expression vector and confirmed with restriction analysis and sequencing. The recombinant vector was transformed into Rosetta gami B (DE3) and BL21 codon plus strains of E. coli for expression analysis. Results showed the soluble expression of fusion protein in the cytoplasmic soluble fraction after sub cellular fractionation of total cell protein. Optimizations were performed for maximum soluble expression and ~40% expression was achieved at 37°C in LB medium with BL21 codon plus strain. The IPTG and lactose concentrations were also optimized and maximum expression was observed with 0.3mM of IPTG at 6 hours of fermentation and 6mM of lactose for 8 hours of fermentation. The fusion protein was characterized by western blotting and native PAGE showing positive confirmation of expression with anti-human BMP2 antibody and dimeric nature was confirmed by native PAGE. Cleavage of SUMO tag, resulted in the aggregation of the rhBMP2 and converted it into an insoluble form again. But, the fusion protein was proceeded for purification with anion exchange chromatography and eluted at 0.5M concentration of NaCl. Final yield of ~75mg/L with 75% purity and 30% recovery was achieved. Further, the fusion protein was tested for biological activity by induction in C2C12 cell and showed dose dependent increase in the ALP activity with maximum at 200ng/ml. The computational analysis was performed and the 3D structure of the fusion protein was constructed with MODELLER and validated with Molecular Dynamic (MD) simulation for 20 ns. Results showed that the constructed model was stable and reliable as shown by the negligible fluctuations in RMSD values in the last 10 ns of MD simulation. The predicted model was further tested for interaction with BMP type-I receptor by using HADDOCK webserver. The best model with lowest HADDOCK score was superimposed with actual crystal structure of BMP2 and BMPR1A and showed minor RMSD variations. Furthermore, the ligand and interface RMSD values of the HADDOCK generated model were in the acceptable range of ~2-5Å with the cut off value of 10Å. The computational analysis justified the biological activity of the rhBMP2 in fusion with human SUMO3 showing no hindrance of SUMO3 in the binding of rhBMP2 with its receptor. In conclusion, B. subtilis had the advantage of fully functional bioactive production of rhBMP2, but further optimizations in the purification strategy is required to reduce the cost of production. Furthermore, optimizations in the selection of promoter and signal peptide could increase the yield. Whereas, in E. coli system, the final yield was high as compared to the Bacillus system but it requires fusion partner for soluble production of rhBMP2. In the current study, removal of SUMO3 caused rhBMP2 to form aggregates. Further, investigations are required in the mechanism of SUMO mediated solubilization with advanced techniques to rule out if SUMO is making modifications in the rhBMP2 structure or acting just as a carrier. Moreover, other fusion tags could be tested for the soluble production. For future directions, BMP2 variants with enhanced binding affinities can be generated to reduce the effective dose of concentration" xml:lang="en_US