Search or add a thesis

Advanced Search (Beta)
Home > Protein Engineering and Characterization of Xylanases from Thermotoga Maritima

Protein Engineering and Characterization of Xylanases from Thermotoga Maritima

Thesis Info

Access Option

External Link

Author

Tajwar, Razia

Program

PhD

Institute

University of the Punjab

City

Lahore

Province

Punjab

Country

Pakistan

Thesis Completing Year

2019

Thesis Completion Status

Completed

Subject

Biological Sciences

Language

English

Link

http://prr.hec.gov.pk/jspui/bitstream/123456789/12400/1/Razia%20%20tajwar%20biological%20sci%202019%20uop%20lhr%20prr.pdf

Added

2021-02-17 19:49:13

Modified

2024-03-24 20:25:49

ARI ID

1676727042553

Asian Research Index Whatsapp Chanel
Asian Research Index Whatsapp Chanel

Join our Whatsapp Channel to get regular updates.

Similar


Xylanases cleave β-1,4-glycosidic bond in xylan backbone and produce xylooligosaccharides. Xylan is the second most abundant carbohydrate polysaccharide and it is a major component of hemicellulose found in plant cell wall. Xylanases from the extremophile sources are of great importance because they are active and stable at wide range of temperature and pH. Xylanases have various applications such as they are used in the production of biofuels, paper and pulp industry, food industry and animal feed. Xylanase XynB of the hyperthermophile Thermotoga maritima, which belongs to glycoside hydrolase family 10 (GH10), does not have an associated carbohydrate binding module (CBM) in the native state. CBM6 and CBM22 from a thermophile Clostridium thermocellum were fused separately to the N- and C-terminal of the catalytic domain of XynB (XynB-C) to determine the effects on activity, thermostability, pH stability, substrate binding and 3-Dimensional (3D) structure of XynB. For this purpose, the genes xynB-C, CBM6-linker and CBM22-linker were synthesized by Genscript and provided in the cloning vector pUC57. The fusion proteins were created by sequential cloning using the appropriate restriction sites into the expression vector pET22b (+). CBM6 and CBM22 were separately fused to the both 5ʹ- and 3ʹ-end of xynB-C. After confirmation by colony PCR and restriction digestion analysis of the positive clones, E. coli BL21 CodonPlus (DE3)-RIPL cells were transformed with the recombinant plasmids pxynB-C, pxynB-B6C, pxynB-CB6, pxynB-B22C and pxynB-CB22 for the expression of proteins. All of the enzyme variants XynB-C, XynB-B6C, XynB-CB6, XynB-B22C and XynB-CB22 were successfully expressed in a soluble form. Partial purification was done by the heat treatment at 60 °C and further purification was done by fractionation of the enzymes using the ion exchange column QFF. Purified enzymes were assayed against the soluble birchwood xylan and oat spelts xylan as well as against the insoluble birchwood xylan and oat spelts xylan. Enzymatic activities of XynB-C and its variants were also performed against the pre-treated wheat straw. XynB-B22C and XynB-CB22 showed 1.7- and 3.24-fold increase in activity against the insoluble birchwood xylan, respectively, whereas activity of XynB-CB22 was also increased 2.76-fold against the soluble birchwood xylan. Like XynB-B22C, CBM6 when attached to the C-terminal of XynB-C resulted in 2.0-fold increase in activity only against the insoluble birchwood xylan, whereas its attachment to the N-terminal did not show any increase of activity against the soluble and the insoluble birchwood xylan. Almost similar trend in activity profiles was observed when the soluble and the insoluble oat spelts xylan were used as substrate. XynB-CB22 showed 2.5- and 3.10-fold increase in activity against the soluble and the insoluble oat spelts xylan, respectively, whereas XynB-B22C and XynB-CB6 showed 1.6- and 1.9-fold increase in activity, respectively, only against the insoluble oat spelts xylan. Again, XynB-B6C did not show any increase in activity against the soluble and the insoluble oat spelts xylan. XynB-CB22, XynB-B22C and XynB-CB6 also showed increase in activity against the pre-treated wheat straw by 60%, 35% and 20%, respectively, whereas XynB-B6C showed no increase in activity as compared to that of the native XynB-C. Substrate binding studies with the insoluble substrate showed that fusion of CBM22 to either N- or C-terminal and CBM6 fusion to the C-terminal of XynB-C increased its binding with the insoluble substrate, whereas XynB-B6C showed little increase in substrate binding. XynB-CB22 also has lower Km values for the soluble and the insoluble substrate than that of XynB-C, whereas XynB-B22C and XynB-CB6 have lower Km values only for the insoluble substrate. Km values of XynB-B6C for the soluble and the insoluble substrate showed that fusion of CBM6 did not increase the affinity of XynB-C with the soluble and the insoluble substrate. The data of substrate binding studies and Km values for the variants of XynB-C are in agreement with the results of their activities. Thermostability studies showed that the variants carrying CBM22 were more thermostable than the variants carrying CBM6, though thermostability of XynB-C decreased with fusion of CBMs. XynB-B22C and XynB-CB22 retained all the activity, whereas XynB-B6C and XynB-CB6 lost 17 and 11% of activity, respectively, at 60 °C for 4 hours. After the incubation of 4 hours at 70 °C, the activities of XynB-B6C and XynB-CB6 remained 21% and 69%, respectively, whereas XynB-B22C and XynB-CB22 retained 87% and 94% activities, respectively. At 80 °C after 4 hours of incubation, XynB-B6C and XynB-CB6 lost almost all their activity while the activities of XynB-B22C and XynB-CB22 remained 56% and 78%, respectively, after this treatment. The native enzyme XynB-C is very stable as after incubation at 80 °C for 4 hours, it lost very little activity. All the variants showed the same optimum pH and temperature for the activity as that for the native XynB-C. pH stability of XynB-C and all its variants was determined by incubating the enzymes for 2 hours in different pH buffer ranging from 4.0-10.0 and results showed that all variants are quite stable at broad range of pH (4.0-10.0) with only little loss of activity. Secondary structural analysis and temperature ramping studies were done through circular dichroism (CD) spectroscopy for XynB-C and all its variants. CD results showed that all the XynB variants had the particular α/β mix structure of xylanase belonging to the family GH10 with a single broad negative peak around 210–220 nm and a positive peak around 195–196 nm. Comparison of secondary structure contents obtained by molecular modelling were found to be in agreement with the data from circular dichroism analysis. Temperature ramping studies showed that the secondary structure contents of the XynB-C variants carrying CBMs retained their integrity at 60 °C. But unfolding of the structure was observed at 80 °C, as the secondary structure contents changed and this change was more pronounced in the case of variants carrying CBM6. However, the secondary structure contents of the native enzyme XynB-C were only slightly changed even at 80 °C, which showed that the 3D structure of XynB-C remained intact with increasing temperature. Structural studies of XynB variants XynB-B6C, XynB-CB6, XynB-B22C and XynB-CB22 were done by creating their 3D structures using homology modelling and docked with the ligand (xylan) molecule. Molecular modelling analysis showed that the active site residues of the catalytic domain and the binding residues of CBM6 and CBM22 were located on the surface of molecule in the case of XynB-CB6, XynB-B22C and XynB-CB22, whereas in XynB-B6C, the binding residues were found somewhat buried. In the case of XynB-CB22, the catalytic and the binding residues seem to be located favorably adjacent to each other, thus showing higher increase in activity than any other variant of XynB-C. This study shows that a favorable orientation of the catalytic domain and the CBM would allow arrangement of the active site residues of the catalytic domain and the binding residues of the CBM in a unique fashion, to obtain the maximum activity.
Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

سچے جھوٹیاں دے نال اڑن لگ پئے

سچّے جُھوٹیاں دے نال اڑن لگ پئے

شیر پنجریاں دے وچ تڑن لگ پئے
کسے غیر تے کی اعتماد کرنا

سکے بھائی آپس وچ لڑن لگ پئے
کیویں امن دی دھرتی من لیئے

بے گناہ جد سولیاں چڑھن لگ پئے
اجے عشق دی ہی ابتدا کیتی

بدنامیاں سرے تے مڑھن لگ پئے
اون لگی بلوغت دی عمر جس دم

وال سراں توں سارے جھڑن لگ پئے
حاکم کھب کے نہیں تحقیق کردے

من گھڑت کہانیاں گھڑن لگ پئے

Impacts of Psychological and Domestic Violence On Women in Pakistan: Problems & Solutions in the Light of Islamic Teachings

Since the creation of woman, she faces many problems in her life. Different societies have their own customs and traditions. And woman faces problems regarding them. Pakistani society has its own influence and civilization which causes many problems of women. In these traditions, one of the bad behaviors is, marriage of woman on wrong time i.e. Late marriage or early time marriage. In the result, at least, she faces Problems regarding dowry, Joint family system, Family disintegration, Childlessness, Propensity to violence, Effects of husband remaining alone from wife etc. On the basis of social divisions in Pakistani family system and depiction of woman issues having effects on herself, the significant and their mediation is very necessary, too. Many of these problems has Psychological impacts on woman in her domestic life. In Pakistani society where woman faces domestic and family problems, there economic problems too pester her which include greed for riches and lack of them both pester her psychologically. In this paper, above mentioned problems of women in Pakistani society has been discussed in the light of Islamic teachings.

Structural and In-Vitro Characterization of Bioactive Glass Ceramics With Different Cao/Mgo Ratios

Bioceramics and bioglass ceramics are a wide arena of research in the current era due to their potential applications in orthopedics and surgery. In the present work, Glasses of novel composition (50-x) CaO – 34 SiO 2 -14.5 P 2 O 5 -1 CaF 2 -0.5 MgF –x MgO (% wt) (where x=4, 25 and 46) were synthesized by conventional melt-quench method. Each glass was sintered at different temperatures according to the endothermic and exothermic peaks of differential scanning calorimetric (DSC) data to form three glass ceramics named G1, G2 and G3 respectively. Crystalline phases of hydroxyapatite and wollastonite were observed in G1 and G2 whereas new phase of whitlockite was observed in G3 by X-Ray diffractometer (XRD) due to greater amount of MgO. Bulk properties of the samples were examined by studying density using Archimedes principle. Morphological study by scanning electron microscope (SEM) illustrated that the rate of densification increased with the decrease of CaO/MgO ratio. Bulk properties of the samples and morphological study by SEM revealed that rate of densification increased with the decrease of CaO/MgO ratio. Micro-hardness values (5192-6467 MPa) and bending strengths (211- 281 MPa ) were found to be increased with increase of MgO in the composition and the results were in accordance to that of XRD, SEM and bulk density. After investigating the structural and mechanical properties of the samples, in- vitro dissolution behavior of the same samples was investigated in conventional simulated body fluid (Kokubo’s SBF-K9). Ionic concentration of SBF-K9 slightly varies from that of human blood plasma (less CO 3- ions and high Cl - ion). So it could be presumed that it could show slightly different results in-vivo. In order to avoid this situation and to clearly understand the behavior of G1, G2 and G3 in the in-vivo environment, bioactivity of the samples was further investigated in revised SBF (r-SBF) that has ionic concentration exactly equal to that of human blood plasma (HBP) and a comparative study of dissolution behavior of the samples, in SBF-K9 and r-SBF was performed. For that purpose, first, the stability of r-SBF and SBF-K9 was checked by observing the spontaneous precipitations on the surfaces of solutions, using atomic absorption spectroscopy and measuring the pH values, after respective days. Due to thexii loss of stability of r-SBF after 25 days, we investigated the dissolution behavior of each sample in each solution upto 25 days. To perform the comparative study, thin film X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), Energy dispersive spectroscopy (EDX), Atomic absorption spectroscopy (AAS) and pH meter were used. Thin film XRD analysis revealed the diffusive nature of the phases on the surfaces of samples after soaking for different time periods in r-SBF. It showed the poor precipitation and small thickness of the HCAp layer on the samples as compared to that in SBF-K9, thus indicating the fitness and sensitivity of r-SBF for in-vitro characterization of samples. AAS, FTIR and EDS revealed slow bonding rate on the surfaces of the samples in r-SBF than that in SBF-K9 that showed the dependence of bond formation on the composition of the materials as well as on the physiological fluid used for in-vitro characterization. The rate of HCAp formation was slower in r-SBF due to more competitive adsorption of CO 3- ions to Ca and Mg ions owing to greater amount of CO 3- in r-SBF than that in SBF-K9. It shows the importance of CO 3- content in the physiological fluids for the in-vitro assessment of samples. Due to equal ionic concentration of HBP and r-SBF, assessment of samples in r-SBF could clearly indicate the exact timing of bond formation and behavior of samples in-vivo. So, r-SBF is recommended to be used for assessment of samples to clearly understand their behavior in-vivo.