The aim of the present research was to assess the metal phytoextraction potential of some selected plant species (Hemarthria compressa L., Lemna minor L. and Typha angustifolia L.) growing on industrial sludge along with resistant microbial strains (Aspergillus terreus, Aspergillus niger, Bacillus sp. and Acinetobacter sp.) either alone or in combinations. Based upon the result of preliminary experiments, the sludge concentrations selected for the actual greenhouse and field experiments were 30 and 60% along with control (0%). Keeping in view the metal resistance efficiency of microbes, the experiment comprised of seven treatments i.e., C (control without microbes), F1 (Aspergillus terreus), F2 (A. niger), F1+F2 (A. terreus + A. niger), B1 (Bacillus sp.), B2 (Acinetobacter sp.), B1+B2 (Bacillus sp. + Acinetobacter sp.), respectively. Six independent experiments (4 green-house and 2 field) were launched simultaneously. Physicochemical analysis of initial sludge samples revealed that tannery and paper sludge had a high pollution load due to higher values of pH, conductivity, total dissolved solids (TDS), sodium chloride (NaCl), biochemical oxygen demand (BOD), chemical oxygen demand (COD) and metals like Cr, Cd, Zn, Cu and Pb. After 90 days of plant growth in sludge, the growth was significantly decreased with increase in the concentration of sludge. On the other hand, in sludge concentrations along with microbial inoculum, plants showed the maximum shoot length, roots, leaves and fresh/dry weight in F1+F2 and F+B treatment as compared to all other tested treatments. Physicochemical parameters also showed a substantial decrease except TDS that showed an increasing trend. Minimum values of all were observed in combined microbial treatment as compared to control and other treatments. The chlorophyll content of leaves in all selected plants decreased with increasing the concentration of industrial sludge. Plants growing in different concentration of sludge, supplemented with combined fungal treatments in pot experiments and F+B treatments in field experiments, showed higher chlorophyll contents than the plants growing in other treatments. Results revealed that all the tested plants species showed a higher accumulation of essential (Ca, K, Na and iii Mg) and heavy (Cd Cr, Cd, Zn, Cu and Pb) metals at 60% concentration of sludge as compared 0 and 30% after 90 days of plant growth. The metal uptake was higher in their shoots as compared to roots in case of all the plant species, in both paper and tannery sludge. Further, the uptake of metals was significantly higher in F1+F2, B1+B2 and F+B treatment as compared to rest of the treatments i.e. F1, F2, B1, B2, F, B alone and control treatment. The metal extraction efficiency of the experimental plants was observed to be in the order of T. angustifolia > H. compressa > L. minor. The translocation factor and enrichment coefficient indicated that a higher amount of heavy metals was absorbed by the plants than was present in the sludge. The least bioaccumulation was observed for Na in all the cases. Typha angustifolia proved to be a better metal accumulator than all other hydrophytes. Biochemical analysis of T. angustifolia and H. compressa showed that in 60% TS with combine fungal and bacterial inoculum, superoxide dismutase (SOD) and catalase (CAT) activity was high i.e. in the order of 60% TS> 30% TS> 0% TS. The results from this work in the light of contemporary literature indicates that a probable genetic modification at cellular level resulted in an acquisition of metal tolerance that was also evident in enhanced biochemical activity of antioxidant enzymes, uptake of high metal contents and ultimately better plant growth in all the treatments as compared to control. The results of these experiments emphasize that efficient pollution hyperaccumulators can be used for commercial and large-scale cleaning and bioremediation of tannery sludge. The plants can then be harvested easily and incinerated. Constructed wetlands offer the treatment benefits of natural wetlands in a more controlled environment, if developed along the industrial units. The treatment processes within such a system will be self- sustainable, requiring little input of energy, chemicals and operator maintenance
بیماری سے بچاؤ کے لیے ریاست اور عوام کا کردار بیماری ، عارضہ، مرض اور روگ یہ ہم معنی الفاظ ہیں۔ مرض اور بیماری صحت اور تندرستی کا متضاد ہے، انسانی اعضاء جب تک اپنے افعال کماحقہٗ سر انجام دیتے رہتے ہیں صحت و تندرستی برقرار رہتی ہے۔ اگر ان کے افعال کی بجا آوری میں رخنہ پیدا ہو جائے تو یہ مرض اور بیماری ہے۔ اس کا سبب خواہ خارجی عوامل ہوں یا اندرونی طور پر کوئی غیر مرئی طاقت برسر پیکار ہو! تندرستی اور صحت قدرت کی طرف سے ایک عظیم عطیہ ہے۔ اس نعمت خداوندی کے زیور سے مرصعّ انسان دیگر انعامات الٰہیہ سے بھر پور فائدہ اٹھایا جا سکتا ہے۔ لیکن اگر کسی کے آنگن میں گلشنِ صحت کے گلہائے رنگارنگ نہیں کھلے۔ بیماری اور مرض کے مہیب ومنحوس سایوں نے اسے اپنی لپیٹ میں لے رکھا ہے۔ بستر مرگ پر پڑا ہوا وہ نحیف شخص اپنی نقاہت بھری نظروں سے گلستان صحت و تندرستی میں محو پرواز طائران خوش الحان کو حسرت بھری نگاہ سے دیکھ تورہا ہے لیکن وہ کائنات کی رنگینیوں اور رعنائیوں سے بھی حظّ نہیں اُٹھاسکتا۔ تنگدستی اگر نہ ہو سالکؔ
In the early days of Islam, either of the married couple entering into Islam does not affect their marriage contract and it continued to be valid even after the Emigration of the Holy Prophet (peace and mercy be upon him) to Madina. In fact, it has been observed until Hudhabiya Truce was signed. It was also included the terms if someone from Quraish without accompanying the wali approaches the Holy Prophet (Peaceand Mercy be upon him), he/she will be returned to Makkah. After this agreement, many women came to Madina and embraced Islam. But their spouses and relatives followed them their way to Madina. They claimed them back to Makkah. In this respect, Allah almighty revealed a verse of Surah Mumtahina, which is an express evidence that such believing women must not be returned to their former infidel husbands. They were commanded so to marry believing husbands after their separation from their disbelieving spouses. Through this verse, Muslim husbands were forbidden to stay and have conjugal relations with their nonbelieving wives, too. Similarly, every believing wife was forbidden to reside with her disbelieving husband. The companions abided by the ruling in its entirety and separated from their non- believing spouses. Jurists have derived many instructions from the verse 10 of Surah Mumtahina, which are discussed in this paper.
Aspergillus carbonarius (NRRL–369) and Aspergillus oryzae from Aspergillus genus as well as Cladosporium carrionii and Cladosporium resinae (NRRL–6437) from Cladosporium genus were selected for the present study. Nutrient media were optimized for the growth and production of secondary metabolites. Out of five different media used, A. carbonarius and A. oryzae produced relatively more metabolites in Czapek–dox (Glucose and Starch) broth media (CGSB). Whereas; C. carrionii and C. resinae produced relatively more metabolites in Czapek yeast extracts broth (CYB). To further increase secondary metabolites productivity, two additional chemical compounds (suberoyl anilide hydroxamic acid; SAHA and 5–azacytidine; 5–AZA) were also used as chemical inducers for all fungi except C. carrionii. A dose of 10 μM/100 mL of SAHA resulted in higher secondary metabolites production from Aspergillus species and 15 μM/100 mL of SAHA resulted in higher secondary metabolites production from C. resinae. While a dose 15 μM/100 mL of 5–AZA resulted in higher secondary metabolites production from all the species. Secondary metabolites produced were then studied for its respective biological activities. In antibacterial assay a dose of 500 μg/mL of ethyl acetate extracted from A. carbonarius inhibited the growth of B. subtilis (64.5%), while for antifungal testing a dose of 1000 μg/mL ethyl acetate extract inhibited the linear growth of C. glabrata (58.5%). Whereas, in cytotoxic activities, dose of 1000 μg/mL of ethyl acetate extract showed 94% mortality against brine shrimps, while for phytotoxic activities, a dose 1000 μg/mL showed 90% mortality against Lemna. A dose of 500 μg/mL of ethyl acetate extracted from A. oryzae inhibited the growth of B. subtilis (94%), while for antifungal testing, a dose of 1000 μg/mL of ABSTRACT xxi ethyl acetate extract inhibited the linear growth of M. Canis (84%). Whereas, in cytotoxic activities a dose of 1000 μg/mL of ethyl acetate extract showed 52% mortality against brine shrimps, while for phytotoxic activities, a dose of 1000 μg/mL of ethyl acetate extract showed 67% mortality against Lemna. Furthermore, during the antibacterial assay a dose of 500 μg/mL of ethyl acetate extracted from C. carrionii inhibited the growth of B. subtilis (66%), while for antifungal testing a dose of 1000 μg/mL ethyl acetate extract inhibited the growth of C. albicans (60%). Whereas, in cytotoxic activities a dose of 1000 μg/mL of ethyl acetate extract showed 87% mortality against brine shrimps, while for phytotoxic activities, a dose of 1000 μg/mL ethyl acetate extract showed 80% mortality against Lemna. Finally during the antibacterial assay a dose of 500 μg/mL of ethyl acetate extracted from C. resinae inhibited the growth of S. aureus (81%), while for antifungal testing a dose of 1000 μg/mL of ethyl acetate extract inhibited the growth of A. flavus (15%), while in cytotoxic activities a dose of 1000 μg/mL of ethyl acetate showed 93% mortality against brine shrimps, while for phytotoxic activities, a dose of 1000 μg/mL of ethyl acetate showed 80% mortality against Lemna. The biological activities indicates that, the extracts from A. oryzae and C. carrionii inhibited the growth of experimental organisms with greater extent as compared to A. carbonarius and C. resinae; therefore, A. oryzae and C. carrionii were further selected for the isolation of pure metabolites. A total of three new and four known metabolites were isolated. Two new metabolites were isolated from A. oryzae while one new and four known metabolites were isolated from C. carrionii using preparative High Performance Liquid Chromatography (HPLC) and column chromatography techniques. The structures of all the compounds isolated were ABSTRACT xxii elucidated using (1D and 2D) NMR, IR and HR–MS techniques. The new metabolites were 6–butyl–3–methylene–2–oxotetrahydro–2H–pyran–4–carboxylic acid (A–41), 6–butyl–3–methylene–2–oxo–3,6–dihydro–2H–pyran–4–carboxylic acid (A–42) and (3S,6S)–3–allyl–6–benzylpiperazine–2,5–dione (D–44) whereas, the known metabolites were 5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one (C–43), 6–(3– methylbut–2–enyl)–1H–indole–3–carboxylic acid (45), 2-(4,6-dihydroxy-3-oxo-1,3- dihydroisobenzofuran-1-yl) acetic acid (46) and 2-(4-hydroxy-1,3- dihydroisobenzofuran-1-yl) acetic acid (47). The two new metabolites (A–41 and B–42) from A. oryzae were selected for the determination of their biosynthetic pathways using [1– 13C] labelled acetate. The [1– 13C] labelled acetate was added to the media on 4th, 5th and 6th days respectively. After the feeding of isotopic [1– 13C] labelled acetate as precursor, the labelled metabolites were isolated using HPLC and the pattern of their incorporation were determined using high field NMR. The basic idea of the present work was to isolate biologically active secondary metabolite(s) from fungi and to produce good quality of antibiotics for the welfare of the society.