Search or add a thesis

Advanced Search (Beta)
Home > Series and Numerical Solutions for Flows of Chemically Reactive Fluids

Series and Numerical Solutions for Flows of Chemically Reactive Fluids

Thesis Info

Access Option

External Link

Author

Sheikh, Mariam

Program

PhD

Institute

The Islamia University of Bahawalpur

City

Bahawalpur

Province

Punjab

Country

Pakistan

Thesis Completing Year

2016

Thesis Completion Status

Completed

Subject

Mathemaics

Language

English

Link

http://prr.hec.gov.pk/jspui/bitstream/123456789/2791/1/Mariam_Sheikh_Maths_HSR_IU_Bahawalpur_2016_20.09.2016.pdf

Added

2021-02-17 19:49:13

Modified

2024-03-24 20:25:49

ARI ID

1676727161857

Similar


The aim of this thesis is to investigate the mass transfer analysis in the two-dimensional boundary layer flow of Newtonian/non-Newtonian fluids near a stagnation point in the presence of chemically reactive species. Both homogeneous and heterogeneous chemical reactions are considered by taking the n th order homogeneous chemical reaction of constant rate k n and the diffusion coefficients of both reactant and autocatalysis are equal in heterogeneous reaction. Heat transfer analysis is also performed using Fourier’s and Cattaneo-Christov heat flux models with thermal radiation and heat generation/absorption. The modeled flow equations in terms of continuity, momentum, temperature and concentration are transformed into nonlinear ordinary differential equations by means of similarity transformations. Both analytical and numerical solutions are obtained by solving these equations using homotopy analysis method (HAM), Runge-Kutta-Fehlberg algorithm with shooting technique and bivariate spectral collocation quasi-linearization method. A parametric study of all pertinent parameters is accomplished and the physical results are shown through graphs and tables. It is inferred that the concentration of the species decreases with an increment in the strength of homogeneous and heterogeneous reaction parameters, while the concentration boundary layer thickness increases. Furthermore, after a certain value of dimensionless space variable, homogeneous and heterogeneous reactions has no effect on the concentration of reactant and this critical value of space variable depends on the strength of homogeneous reaction.
Loading...
Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...