Search or add a thesis

Advanced Search (Beta)
Home > Spatio-Temporal Wave Packet Dynamics in Fermi-Ulam Accelerator

Spatio-Temporal Wave Packet Dynamics in Fermi-Ulam Accelerator

Thesis Info

Access Option

External Link

Author

Tasawar Abbas

Program

PhD

Institute

Quaid-I-Azam University

City

Islamabad

Province

Islamabad.

Country

Pakistan

Thesis Completing Year

2012

Thesis Completion Status

Completed

Subject

Physics

Language

English

Link

http://prr.hec.gov.pk/jspui/handle/123456789/979

Added

2021-02-17 19:49:13

Modified

2024-03-24 20:25:49

ARI ID

1676727219556

Similar


The idea of wave packet, that clarified many conceptual difficulties, has more recently been revisited to address interferometric and dynamical issues. Present work focuses on the spatio-temporal dynamics of the quantum wave packets in the Fermi-Ulam Accelerator Model. The specific system considered here is a one-dimensional box under periodic oscillations at one boundary. Such a seemingly simple system can be mapped to non-trivial problems like BEC trapped in an oscillating cavity or dynamics of atomic wave packet in different potential in presence or absence of gravitational field. The system is shown to display rich dynamical features including transitions from regular to stochastic and further to chaotic domain in classical phase space. We have obtained the approximated eigen-value solutions of the problem through time dependent Schrodinger’s equation under rescaling transformations that effectively replace moving boundary with a static one. Consequently the running time becomes a nonlinear function of the continuously changing boundary. Based on these solutions, revivals or the resurrection of the original wave packet, in the driven and un-driven Fermi-Ulam model are presented. Such revivals correspond to the constructive interference whereas the wave packet’s collapse owes to destructive interference. Furthermore, interplay of constructive and destructive interferences also readily mimics the fractional revivals. It is further demonstrated that initial position and momentum play a highly crucial role in the emergent revival and fractional revival patterns. It is shown that the symmetries exhibited by such structures in un-driven systems are usually lost under driven conditions and the revival/fractional revival times can only be predicted through a transcendental equation whose solution mainly depends on the strength of the external driving force. In present thesis we have proposed a comprehensive mathematical technique to calculate these hitherto unpredictable times. In addition, a graphical method is also suggested to observe these asymmetric revival/fractional revival times. This apparent asymmetry, do display an overall periodicity over a comparatively long span covering many times of revivals. It is found that whenever the ratio between the period of wall oscillation and quantum revival time `α/β'' is a rational number then the revivals time shows a periodicity after β viinumber of revival times over α wall oscillation. Standard tools of autocorrelation and quantum carpets, a consequence of quantum interference, have been employed for visual manifestation of these revivals. These carpets amply demonstrate the explicit asymmetric shifting of revival times for the driven case. These micro changes exhibited in quantum carpet morphologies consequently yield amended phase velocities associated with the canals and ridges in the driven framework. Furthermore, to grasp the quantum phase space dynamics in its entirety, we have also utilized the more sophisticated techniques of the Wigner function and information entropy. It is demonstrated mathematically that revivals not apparent via autocorrelation become prominent in the Wigner phase space description along with the appearance of smooth mini wave packets in the fractional revivals. These interference patterns emerge due to the state vector formed through the linear combination of Gaussians with different positions and momenta having pure Gaussian as well as oscillatory terms. Moreover, the information entropy, like the Wigner function also predicts the revivals when and where they happen. Thus a rich pattern of fractional revivals, including some altogether new ones, are observed through this tool in both driven and un-driven situations. Finally we have elucidated various scenarios including cold atoms in magneto-optical traps where such a system can be experimentally realized along with the suggestions for future work in this specific domain.
Loading...

Similar Thesis

Showing 1 to 20 of 100 entries
TitleAuthorSupervisorDegreeInstitute
PhD
Quaid-I-Azam University, Islamabad, Pakistan
PhD
Quaid-i-Azam University, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
RPH
COMSATS University Islamabad, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
RRG
COMSATS University Islamabad, Islamabad, Pakistan
PhD
University of Engineering and Technology, Lahore, Pakistan
PhD
International Islamic University, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
PME
COMSATS University Islamabad, Islamabad, Pakistan
PhD
COMSATS University Islamabad, Islamabad, Pakistan
PhD
Capital University of Science & Technology, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
PhD
University of Sargodha, Sargodha, Pakistan
RRG
COMSATS University Islamabad, Islamabad, Pakistan
TitleAuthorSupervisorDegreeInstitute
Showing 1 to 20 of 100 entries

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...