Deafness or hearing loss is one of the most prominent genetic disorders in human beings. Hearing loss is caused by a number of environmental and genetic factors. The genetic factors involve about 130 genes which have role in hearing loss. Among them, the mutations in channel protein connexin genes GJB2, GJB6 and in mtDNA genes resulting in hearing losses. The GJB2 and GJB6 genes codes for connexin-26 and connexin-30 proteins, which help the potassium K+ ions recycling in the inner ear cells and activates/trigger the neurotransmitters.The neurotransmitters are signaling moleculeswhich here receive and transfer, the nerve impulses between the central nervous system and sense organs, recognizing sound accordingly. For unraveling the mechanism of Non-syndromic Hearing Loss (NSHL), a precise laboratory protocols was established and employed, for identification two nuclear genes i.e. exon2 of GJB2, the exon1 of GJB6 gene, and detection of mutations in three mitochondrial genes viz. MTRNR1, MTRNR2 and MT-TV. For elaborating the pattern of mutations in NSHL patients, 1500 oral swabs were collected from the deaf patients belonging to Abbottabad, Bannu, Charsadda, Haripur, Mansehra, Mardan, Peshawar, Swabi and Swat districts of Khyber Pakhtunkhwa Province (KP), Pakistan. We observed mutations in 5 genes i.e. 2 nuclear (GJB2 and GJB6) and 3 mitochondrial genes (MTRNR1, MTRNR2 and MT-TV) in 700 (47%) out of the total 1500 deaf patients. Whereas, the rest of deaf patients (800) might be having mutations in other deafness related genes. We observed higher incidence of deafness related gene mutations in males (68%) as compared to the females (32%). The mutations in GJB2 and GJB6 genes showed prevalence of 1.6 and 0.67%, respectively whereas, in mitochondrial genes i.e. MTRNR1, MTRNR2 and MT-TV, the mutation rate was 0.8, 0.73 and 0.53%, respectively. The protocol includes the isolation of total genomic DNA from the oral swab epithelial cells through modified phenol-chloroform method of DNA extraction. The DNA was amplified through thermo scientific polymerase chain reaction (PCR) and gene cleaned through manual washing of PCR product with 75% ethanol with step wise centrifugation. The sequencing was carried out in gene analyzer machine, through Sanger’s sequencing method. After sequencing of desired genes, all sequences were verified and confirmed by comparison with reference sequences at NCBI gene bank. We identified some known and many novel mutations in sampled deaf patients including indel, missense and nonsense mutations in targeted genes. The identified mutations in GJB2 gene include V27C, D46E, N54K, K61R, E110G, A78S, A78P, D66N, W77C, W77L, K15E, K103N, V153I, 120F, F115V, D46A, V38A, W24*, E119* c.327G>A, c.186C>T, c.228A>T, c.120A>G and c.240G>A, . The identified mutations in GJB6 gene were c.41delA, c.42delC, c.43delA, c.31delG, c.ins374-375(16nt), c.ins320321(19nt), p.K15Q, p.A88T, p.A92D and p.A149S mutations. The mutations in MTRNR1 gene were, 1349 T>G, 1420T>G, 1438A>G, 1440 G>A, 1442 G>A, 1492 A>C, 1544 A>T, 1545 G>A, 1546A>T, 1554G>A, 1575 T>G, 1577A>G and 1598 G>A variants in MTRNR1 gene. The mutations identified in MTRNR2 gene included, 1671 G>A, insT>1711, 1735 A>C, 1754 G>A, 1811 A>G, 1814 A>C, delT> 1872, 1888 G>A, 1899 G>A, insT>1960 and insG>1990.Similarly, the mutations identified in MT-TV gene included, 1604G>T, 1604G>A, 1606G>A, 1609T>G, 1610 A>C, 1625 A>C, 1641G>T, and 1644G>A. Analyses of the mutations data revealed that these mutations cause frame shift, missense and nonsense mutational changes in the gene expression and thereby result in hearing losses. It was further confirmed by protein alignment, that these mutations also changes the structural configurations of Cx26 and cx30 proteins, as well as affect the mitochondrial DNA dysfunction, which impair sound recognition mechanism. Our study provides reliable protocols for DNA extraction, gene cleaning and sequencing of concerned responsible genes for hearing loss and thereby screening deaf patients on one hand, and on the other hand we have established a baseline for gene mutations in deaf patients of Khyber Pakhtunkhwa. These findings can be used for genetic counselling, disease diagnostics and gene therapy etc.
حضرت شاہ آفاق احمد ردولویؒ درگاہ شریف، ردولی۔ محترمی! تسلیمات خدا کرے آپ کا مزاج اچھا ہو، اس سے پہلے بھی میں دو خط آپ کو تحریر کرچکا ہوں مگر جواب سے محروم ہوں۔ خدا معلوم وہ خطوط آپ تک پہنچے بھی یا نہیں، میرے حقیقی ماموں حضرت شاہ آفاق احمد سجادہ نشین درگاہ شیخ العام ردولی شریف کا ۲۵؍ جولائی ۸۰ء کو اچانک میڈیکل کالج لکھنؤ میں قلبی دورہ پڑنے سے انتقال ہوگیا، ان کو پہلا دورہ ردولی شریف میں پڑا تھا اس کے بعد تین دورے میڈیکل کالج لکھنؤ میں پڑے، ڈاکٹروں نے پیس میکر لگانے کو کہا وہ بھی لگادیا گیا۔ مگر موت کے آگے اور خداوند عالم کی مرضی کے آگے کوئی اختیار نہیں چلتا، چونکہ اکثر بیشتر وہ آپ کا تذکرہ فرمایا کرتے تھے اسی لئے ان کی بیماری کی اطلاع بھی ۳۰؍ جون کو آپ کو اور وسیم الحسن صاحب کو بھی دے دی تھی، اس کے بعد ۲۸؍ جولائی کو انتقال کی بھی خبر تحریر کردی تھی، اسی سال عرس شریف کی ۱۴؍ تاریخ کی شب کی محفل میں اپنے بڑے صاحبزادے تمیم میاں صاحب مرحوم جن کا بھی اچانک بقرعید میں انتقال ہوا تھا ان کے بڑے صاحبزادے نیرمیاں کی دستار بندی اپنے ہاتھوں کردی تھی اور خرقہ شریف بھی انہیں کو پہنا دیا تھا، چونکہ نیرمیاں ابھی طالب علم ہیں اور بی۔کام کررہے ہیں، اس لئے ماموں صاحب مرحوم نے اپنے چھوٹے صاحبزادے حسین میاں کو نیرمیاں کا ولی اور سرپرست مقرر کردیا ہے، جو نیرمیاں کی جگہ پر سجادگی کے فرائض انجام دے رہے ہیں، مگر ابھی دونوں صاحبزادگان بچے ہیں آپ حضرات ہی ان کے سرپرست اور بزرگ ہیں، اس کم عمری میں ان کے اوپر اتنی بڑی ذمہ داری آپڑی ہے، لہٰذا آپ حضرات کی شفقت دیرینہ ہی ان کی تسلی کا باعث ہوگی، چہلم...
One of the main arguments that Allah has made in the Quran about the authenticity of this last book is that the Quran is free from all kinds of contradictions and differences. Whoever interprets the Quran, the authenticity of the Quran has become clearer on it. Different forms of language and literature are adopted in the Quran. If one is not familiar with the Quranic verses or does not have access to the truth of the words or is unfamiliar with the reality of the ayah, it may be possible to feel the contradiction in some places, when in reality it is not.
The growing world population has diversified food production scenario over the last decades. In developing countries, large area of land is not in use for crop production. Since the available land cannot be increased, tunnel farming has been used as a solution to make efficient use of land in hands. Tunnel farming cultivation is an encouraging industry of modern agriculture in the world. There are several advantages of tunnel farming, but most prominent are: (1) growing off-season vegetable or prolonging growing season, and (2) conserving crop quality and increasing crop yield on a limited land in minimum possible time. Fundamentally, there are three types of tunnel—high tunnels, walk-in tunnels, and low tunnels. The priority of tunnel farming is to control climate according to the crop need, because each crop needs its own favorable climate condition for the optimal growth. The environmental conditions affect the productivity and profitability of the crops. Nowadays computer based control systems are required for controlling climate, because manually controlling climate poses many challenges. The development of automation system for tunnels comprises different steps, including factors affecting climate, crop demands, and control algorithms. Fuzzy logic is an efficient substitute for designing a large variety of control applications. It provides an expedient method for the design of complicated dynamic system. As a result, it gives results faster than the conventional control design strategies. The beauty of fuzzy control system is that, these systems deals with nonlinear complicated mathematical models in a very simple and easy way. Its structure is fusion of control rules described by linguistic terms and defined from knowledge of process. However, a controller designed using fuzzy logic is advantageous for adapting control parameters to improve the control process. Our work presents a novel climate decision support system for tomatoes in high tunnels using fuzzy logic and adaptive neuro-fuzzy inference system. Three climate decision support systems are developed for high tunnels using fuzzy logic. First climate decision support system takes five inputs—temperature, relative humidity, solar radiations, wind velocity, and weather condition—and controls four outputs—tunnel’s temperature, tunnel’s humidity, fan speed, and shading. Second climate decision support system takes three inputs—temperature, solar radiations and weather condition and controls artificial sunlight. Third climate decision support system takes air quality index and controls air purification. We develop and implement the two main algorithms for climate control systems, one algorithm is for fuzzy logic climate decision support system, and other one is for neuro-fuzzy climate control system. We compute time complexity of both algorithms. We use software MATLAB for showing average error between calculated and targeted outputs. We also perform optimization of fuzzy membership functions using particle swarm optimization method and evaluate its results in MATLAB. Our generated results are very much precise and satisfied the desired range of outputs.