In an attempt to synthesize new antibiotics related to 3 and 5-amino-β- resorcylic acid entities a number of new amide derivatives of 5-amino-β-resorcylic acid were synthesized (15-19) in the course of current study. To study the influence of electron density on stabilization of Ag metal, the synthesized amides were tested for the synthesis of silver nanoparticles (Ag NPs). It was found that as electron density of ligand increases, lesser amount of it is required for capping Ag metal Ag NPs capped with ligand 14 and ligand 19 exhibited higher antibacterial activity than ligand 14 and 19 against Erwinia carotovora pv. carotovora. Ag NPs functionalized with ligand 13, 16 and ligand 19 showed greater inhibitions in growth of Alternaria solani than their ligands. The effect of electron density on growth of inhibition of Erwinia carotovora was also tested. It was established that as electron donating character inreases from ligand 16, 17 and 19, growth of inhibition (%) reduces. However antibacterial activity of these ligand enhances after formation of Ag NPs. So, it was concluded that electron density had a robust impact on antibacterial activity of Ag NPs. A sulfonic acid substituted benzoic acid derivative (Potassium 4- carboxybenzenesulfonate 20) was synthesized and used for synthesis of Ag NPs. Ligand 20 and its Ag NPs are more potent than standard drug (Streptomycin) at 150 and 200 ppm against Erwinia carotovora. Ag NPs stabilize with ligand 20 showed greater antibacterial activity than ligand 20 against Alternaria solani. A number of new strategies were tried for synthesis of 3-amino-β-resorcylic acid, but we failed to synthesize this entity. A novel terathiacyclophane macrocycle 25 was synthesized from 2,4- dihydroxybenzoic acid 1 and used for the formation of Ag NPs. Ag NPs capped with ligand 25 showed excellent antibacterial activity against Erwinia carotovora pv. carotovora than ligand 25 which was completely inactive. However, brine shrimp lethality bioassay test revealed that at 200 ppm, macrocycle 25 and standard drug (Etoposide) showed similar cytotoxic activity against the experimental shrimps. 2,4-dihydroxybenzene carbodithioic acid 28 derivative of 2,4- dihydroxybenzoic 1 acid was also prepared. Biocide 28 Au NPs were synthesized in one pot without using reducing agent. The amount of ligand 28 conjugated to the Au iiiNPs was found to be 7 % by weight, our results indicated that conjugation to the Au NPs boosts the biocidal activity of ligand 28 about 14 times. It has been verified that the structure of Ag and Au nanoparticle core can be determined from MALDI-TOF MS analysis (chapter 4 and 6). Both TEM characterization and MALDI-TOF spectrum analysis of Ag NPs stabilize with ligand 14 and Au NPs capped with ligand 28 indicated the formation of polydispersed nanoparticles. A chemical ionization mechanism is proposed for protonation of the three labile protons of the ligand in nanosilver and nanogold because all the fragments of mass spectrum yielded triply charged specie. To ascertain the potential for in vivo applications, the stability of all synthesized nanoparticles was investigated as a function of temperature, pH and salt concentration. The suspensions were found to be stable for several days at temperatures of up to 100̊ C, a pH range of 2-13 and salt concentrations (NaCl) up to 4 mol/L. 5-Amino-β-resorcylic acid hydrochloride dihydrate 13 was used as a chemosensor for quantitative estimation of Sb 3+ . On the basis of three times the standard deviation of the blank (3σ), detection limit was found to be 30 μM. The Sb(III) obeyed Beer’s law from 1-20 equivalents with a linear regression equation of I = 325.2 + 33.78 C with R 2 = 0.967.
بھانویں دنیا بنی گلوبل عشق دا پینڈا اے مارو تھل دے دے سُکھ یا پنڈ دُکھاں دی جو کجھ گھلنا ای، جھبدے گھل چھڈ دے گلہ تے چغلی غیبت بن جا ہن بندے دا پھل ان شا ء اللہ، آساں لگیاں چنگی ہوسی اَج توں وی کل سکھ رہندے نیں پرے پریڑے بیٹھے دکھ دوارہ ای مل اساں یار، یاراں دے یار ساڈی سنگت دے نال رل سر تے پنڈدکھاں دی بھاری کرسی آپے مولا ای حل
This article discusses the urgency of a management development program. A development principle that combines experiential learning, classroom learning and learning through others. The program development strategy can run well if it is accompanied by a well-planned human resource and capacity development program. So that it is expected to be able to help achieve the goals in producing high quality human resources. The human resource development strategy is a plan on how the quality of human resources can develop into a better direction and increase their work capacity. And have good loyalty to the company. Human resource development is needed for the continuity of a company so that it can develop more dynamically. Because human resources are the most important element in a company.
This research project deals with the elaboration and evaluation of coacervation technique for the microencapsulation of single drug (nimesulide) and/or in combination (nimesulide and tizanidine) using non-biodegradable and biodegradable polymers and physicochemical evaluation of prepared Aims and objectives microparticles. The coacervation inducing methods adopted were temperature change, pH change and non-solvent addition. The polymers employed were non-biodegradable (ethylcellulose and hydroxypropylmethylcellulose) and biodegradable [Chitosan and poly(lactide-o-glycolic acid)]. Various microparticulate formulations were prepared by varying the ratio of drug to polymer. Firstly, EC microparticles were prepared using coacervation technique induced by temperature change, to sustain the release of nimesulide and study the effect of various formulation variables. Secondly, floating microparticles of nimesulide using HPMC were prepared via coacervation non-solvent addition technique to provide a mean of getting low dosage for prolonged periods and to avoid direct contact with mucosa to minimize the irritant effect of drug on the stomach. Thirdly, nimesulide-chitosan microparticles were prepared by pH change coacervation by using cross-linking agent glutaraldehyde. Fourthly, nimesulide was also formulated as sustained release microcapsules using biodegradable polymer PLGA as the retardant material by non-solvent addition coacervation method. Fifthly, nimesulide was formulated as novel dual coated microparticles using chitosan and EC as encapsulating materials for its improved delivery to the intestine and to prevent gastric irritation and to increase compliance of patient. For dual coating, the coacervation techniques adopted for CTN and EC were pH change and thermal change, respectively. Sixthly, the microparticles for concurrent delivery in combined dosage of nimesilde and tizanidine to maintain a constant therapeutic concentration in plasma that may increase patient’s compliance and to improve the efficacy were prepared using coacervation-thermal change technique. The prepared microparticles with different drug/polymer ratios were characterized by micromeritics, SEM, FTIR, XRD, dissolution and thermal studies. In-vitro, release profiles of prepared microparticles were studied using USP XXIV dissolution apparatus I and II, respectively in 900 ml phosphate buffer pH 6.8 at 75 rpm maintained at 37°C. Release profiles were evaluated by model-dependent as well as model independent approaches. Aims and objectives High Performance Liquid Chromatography was used for in-vivo studies of marketed tablets and EC (with residual concentration very below toxic level for cyclohexane and n-hexane) and chitosan microparticles (with residual concentration very below for glacial acetic acid and glutaraldehyde). A reverse phase C18 column was used. The mobile phase composition was acetonitrile- methanol-15 mM potassium dihydrogen phosphate buffer (30:20:50), the buffer pH was adjusted with potassium hydroxide to 7.8. It was passed through a 0.4 μm filter before use. The flow rate was 1 ml/min at 30 oC and run time was 7 minutes. The detection was performed at 404 nm. Finally, the in-vitro in-vivo correlations (IVIVC) were established between the in-vitro and in-vivo data obtained from EC and chitosan formulations using Wagner-Nelson equation. All microparticles were discrete, yellowish in colour and irregular in morphology with good stability, fine rheological properties and good encapsulation efficiencies. Percentage product yields were greater than 80% for EC and HPMC formulations. No strong chemical interaction was observed in between drug and polymers as evident from FTIR, XRD and thermal analyses. It was found that release behaviour was biphasic and directly proportional to polymer concentration. According to the plots linearity drug release profile from all the formulations was explained in the order Higuchi’s equation > zero order > first order. The method of drug release from all formulations was anomalous diffusion. It was found that pH change coacervation is an efficient method to encapsulate biopharmaceutical class II drugs into different polymers like EC, HPMC, chitosan and PLGA. The EC formulations (M1 and M2) and conventional tablet (Nimarin®) exhibited good linear IVIVC (R2 = 0.9220, 0.9124, 0.8728, respectively) as compared to M3 (R2 = 0.9449). The results substantiate the success of this mathematical simulation study and encourage researchers to conduct biowaiver studies for other BCS class II drugs. The regression coefficients of IVIVC plots for chitosan formulations (M1, M2, M3) and conventional tablet were 0.8611, 0.9223, 0.9328 and 0.904, respectively.