میں ول ول تکنا مرشد نوں
مار گیا سوہنیا ایہہ مینوں تیرا پیار وے
دل کرے میں ویکھاں تینوں بار بار وے
تیریاں اداواں مینوں بڑا ای ستاندیاں
جدوں یاد آوے تیری بڑا ای رواندیاں
اکھیاں وی ہر ویلے مینہ برساندیاں
جے توں آویں فیر آوے دل نوں قرار وے
مار گیا سوہنیا اے مینوں تیرا پیار وے
جدوں دا میں ویکھا تینوں ہوش میری بھل گئی
چھڈ کاروبار میں تاں گلیاں چ رُل گئی
سارے بھار ہولے ہوئے ککھاں نال تُل گئی
مینوں چنگی لگی تیرے کجلے دی دھار وے
مار گیا سوہنیا اے مینوں تیرا پیار وے
مکھ تیرا ایویں جیویں چن اسمانی اے
ویکھے جو وی ہک واری ہووے اوہ دیوانی اے
اجڑیاں دلاں اُتے ہووے مہربانی اے
ہک واری دے جا مینوں اپنا دیدار وے
مار گیا سوہنیا اے مینوں تیرا پیار وے
تینوں جد تکیا تے میں تیری ہوئی وے
جگ وچ تیرے جیہا دسدا نہ کوئی وے
مینوں سد لے توں میرا یار ’’سنگوئی‘‘ وے
تیرا اوتھے رج رج کراں گی دیدار وے
مار گیا سوہنیا اے مینوں تیرا پیار وے
قادریؔ سائیں ہن نہ گھبرا توں
ٹلے جا کے مندراں وی گل وچ پا توں
جوگی بن در در بین بجا توں
خلق کرے گی فیر تیرے نال پیار وے
مار گیا سوہنیا اے مینوں تیرا پیار وے
Muslims scholars in principle agree that non-combatants are protected and that they lose protection when they directly participate in hostilities. However, the issues of defining the scope of non-combatant and that of direct participation remain contentious which resultantly cause confusions about the protection of medical personnel. The present paper digs out principles of Islamic law relating to the protection of medical personnel during armed conflict and for this purpose focuses on a doctor who works for humanity and who provides medical assistance to all and gives priority on the basis of need only. It tries to find answers to questions such as: is the doctor muqatil (combatant)? Does the act of providing medical assistance to the enemy combatants make the doctor liable for direct participation in hostilities? Does Islamic law distinguish between the legal consequences of direct and indirect participation in hostilities? After exploring the rich Islamic legal literature on the protection of medical personnel during armed conflict, the paper also examines the legal consequences of abuse of the protected status.
The dairy industry is associated with the production of contaminated waste water. The whey disposal remains a serious pollution problem for dairy industry, particularly in developing countries. Direct disposal of whey in the environment creates serious pollution problems, it destroys the physical and chemical structure of soil which decreases the crops yield and if discarded in water bodies, it reduces the aquatic life. The best solution to this environmental problem is the enzymatic hydrolysis of whey by using β-galactosidase which catalyses the hydrolysis of lactose (main constituent of whey) into its basic monomers, glucose and galactose. β-galactosidase can be obtained from different sources like plants, animals and microorganisms whereas bacterial β-galactosidase is generally regarded as safe. The basic aim of present research is to investigate the utilization of dairy industrial waste (cheese whey) as a substrate for the biosynthesis of β-galactosidase to convert environmental waste into useful biomaterial from a noval β-galactosidase producing bacterial isolate from Antarctica. Two hundred and thirty five isolates were obtained from five samples (ice, water and microbial mats) collected from different sites of Antarctica and screened for their ability to produce β-galactosidase by using X-gal. A total of 61 bacterial isolates which turned blue on X-gal were then cultured in R2 medium and Marine medium aseptically at 10˚C for one month. The most potent bacterial isolates were identified using a polyphasic taxonomical approach. Cells were found strictly aerobic, Gram negative, rod shaped, motile and formed creamy white, half transparent colonies. Growth occurred at 4°C to 28°C with an optimum at 20°C, with 0 – 5.0 % (w/v) NaCl (optimum at 0 - 1.0 %) and at pH 4.0 – 11.0 (optimum at pH 7.0 - 9.0). The major fatty acid was C18:1 ω7c. Respiratory quinone was ubiquinone 10 (Q-10). The DNA G+C content was 60.7 %. The polar lipids were phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmethanolamine in addition to three unidentified lipids, one unknown glycolipid, and five unidentified phospholipids. Comparative analysis of 16S rRNA gene sequences showed highest sequence similarity (98.1 %) to Pararhizobium giardinii H152T, P. herbae CCBAU 83011T, and “P. polonicum” F5.1T. In silico average nucleotide identity (ANI) and genome-to-genome distance calculator (GGDC) showed 81.1 % identity (ANI) and 22.6 % identity (GGDC) to the closest relative, “P. polonicum” F5.1T. On the basis of phenotypic, phylogenetic, genomic and chemotaxonomic data, the two strains represent a novel species of the genus Pararhizobium, for which the name Pararhizobium antarcticum sp. nov. is proposed. The type strain is NAQVI 59T LSRP00000000 (=DSMZ 103442T = LMG29675T). Strains NAQVI-58 and NAQVI-59T showed the highest enzyme production (0.21 U/ml) for strain NAQVI-58 and (0.33 U/ml) for strain NAQVI-59 with cheese whey as a substrate at pH (7), 28 ˚C and after 48 hours of incubation respectively. In this study, a new Pararhizobium sp. is discovered by using dairy industrial waste cheese whey as a substrate which is further used for the production of β-galactosidase.