زخم اپنے دکھا نہیں سکتا
یہ تماشا لگا نہیں سکتا
ہوں سخی پھر بھی درد کی دولت
میرے یارو! لٹا نہیں سکتا
میرے اندر جو اب کے دہکا ہے
یہ الائو بجھا نہیں سکتا
رنج ہر اک اٹھا میں سکتا ہوں
پر میں ذلّت اُٹھا نہیں سکتا
رو تو سکتا ہوں عمر بھر تائبؔ
میں کسی کو رُلا نہیں سکتا
Penelitian ini bertujuan untuk mengetahui strategi digital marketing industri halal pada Business Center (BC) Halal Network International Herba Penawar Alwahida Indonesia (HNI-HPAI) Pekanbaru 4 dalam menghadapi Volatility, Uncertainty, Complexity dan Ambiguity (VUCA) di era society 5.0 dan untuk mengetahui tantangan yang ada di era si society 5.0 pada BC HNI-HPAI Pekanbaru 4. Penelitian ini merupakan penelitian lapangan dengan menggunakan pendekatan kualitatif. Informan penelitian berjumlah 3 orang. Sumber penelitian yang digunakan adalah sumber primer dan sumber sekunder. Hasil penelitian menemukan bahwa strategi pemasaran digital yang dilakukan adalah menggunakan media whatsapp dan juga memanfaatkan beberapa media website dan aplikasi digital yang telah disediakan oleh HNI pusat dan unofficial, dan juga BC HNI Pekanbaru 4 mengandalkan para mitra-mitranya dalam pemasaran di media digital. Pada kondisi uncertainty, dalam mengumpulkan informasi BC menggunakan sosial media, dan melakukan edukasi. Pada kondisi kompleksitas, kesulitan yang di alami yaitu masih kekurangan pengelola khusus dibagian sosial media seperti facebook (fb), dan Instagram (ig). Sedangkan pada kondisi ambiguity, sasaran HNI adalah para generasi milenial yang sudah mahir menggunakan media digital. Adapun tantangan yang ada di era society 5.0 ini adalah harus siap dengan kehadiran teknologi, aktif dan mampu mengelola sosial media, inovasi produk, dan terus mengupgrade skill di era society 5.0.
Renewable energy based Distributed Generation (DG) resources are crucial for sustainable energy supply infrastructure as they are non-polluting and inexhaustible. The uncertainties associated with DG resources may cause distinct economic and technical challenges which require comprehensive investigation to facilitate their integration in Distribution System (DS). Generally, DG planning studies are conducted while assuming constant generation and load models. However, such assumptions may result in misleading and inconsistent values for voltage profile, loss reduction, payback period, deferral values, and other relevant calculations.Therefore, to achieve accurate and realistic results, it is necessary to consider variations associated with generation and load. This thesis presents time varying load modeling and probabilistic solar irradiance modeling techniques and investigates their impact on Photovoltaic (PV) based DG planning. A novel Beta distribution based probabilistic generation model is proposed for solar irradiance uncertainty modeling to compute the hourly output power values produced by PV based DG. The beta distribution parameters are found by assuming the variations of irradiance patterns at consecutive time steps. Subsequently, the proposed model is employed to generate various solar irradiance generation scenarios. Then, a time varying load modeling approach is presented for PV based DG planning.Five different types of time varying load models (i.e. residential, commercial, industrial, mixed and constant) are considered. These loads are modeled by combining the time varying characteristics of residential, commercial and industrial loads with the voltage-dependent load model while assuming suitable voltage exponents. The application of these load models make the PV based DG integration more realistic as compared to the conventional model. Furthermore, a methodology has been developed to determine intermittent DG allocation for DS while considering varying load and generation. The objective is to minimize the multiobjective optimization function which involves voltage deviation, active and reactive power loss indices. Finally, the impact of time varying load modeling approach on DG integrated DS performance has been investigated. The proposed DG planning framework has been validated on IEEE 33-bus and 69-bus standard distribution test systems in MATLAB environment. A comparative assessment of different impact indices, penetration level, active and reactive power intake, active and reactive power loss and MVA support offered by the installation of PV based DG for different time varying load models has been performed. The results demonstrate that the proposed generation model is suitable for solar irradiance modeling. Moreover, time varying load modelling approach has a significant impact on DS planning studies under uncertain scenario.