مولانا محمد اویس ندوی نگرامی
دارالمصنفین اور معارف کے حلقہ میں مولانا محمد اویس ندوی نگرامی کا نام محتاج تعارف نہیں ہے، وہ معارف کی مجلس ادارت کے رکن اور دارالمصنفین کی مینیجنگ کمیٹی کے ممبر تھے، رفیق کی حیثیت سے بھی کئی سال تک یہاں رہ چکے اور تصنیف و تالیف کے علاوہ سیرۃ النبی کی نظرثانی میں بھی انھوں نے مولانا سید سلیمان ندوی مرحوم کا ہاتھ بٹایا تھا، سید صاحب کی جوہر شناس نگاہ نے طالب علمی کے زمانہ ہی میں ان کی صلاحیت کا اندازہ کرلیا تھا، تعلیم سے فراغت کے کچھ ہی عرصہ بعد ان کو دارالمصنفین لے آئے، تصنیف و تالیف کے علاوہ وہ ان کی درسی لیاقت کے بھی معترف تھے، قرآن مجید کے مطالعہ کا شوق انہیں شروع ہی سے تھا، سید صاحب کی صحبت میں یہ ذوق اور بڑھا، یوں تو سبھی اہم تفسیریں نظر سے گزریں تھی، لیکن ابن جریر اور ابن کثیر سے زیادہ دلچسپی تھی علامہ ابن تیمیہ اور حافظ ابن قیم کے تو عاشق تھے، ان کا ذکر بڑے والہانہ انداز میں کیا کرتے تھے، اس گرویدگی کا اثر تھا کہ مختلف کتابوں سے ان کے تفسیری بیانات چن کر ایک ضخیم کتاب تیار کردی، ان کی یہ کوشش ہندوستان ہی میں نہیں، بلکہ پوری دنیا میں قدر کی نگاہ سے دیکھی گئی، اب تک کئی اڈیشن شائع کرچکے ہیں۔
علمی انہماک کے ساتھ تزکیۂ نفس اور اصلاح باطن کا بھی بڑا خیال تھا، ان کا خاندان شریعت و طریقت کی جامعیت میں ممتاز تھا، ان کے پردادا مولانا عبدالعلی حضرت شاہ علم اﷲ رائے بریلوی کے سلسلہ سے وابستہ تھے، دادا مولانا محمد ادریس بھی ایک بڑے عالم اور شیخ طریقت تھے، وہ مولانا عبدالحئی فرنگی محلی مولانا عبدالحق حقانی اور قاری عبدالرحمن پانی پتی کے شاگرد اور مولانا فضل رحمن گنج...
Abstract The purpose of this study is to compare the student's and teacher’s perceptions about their current English textbook they used. This study categorized as a descriptive qualitative study. The population of VIII grade students (45 students) of junior high school was involved in this study and an English teacher of them too. The questionnaire and semi-structured interview were used as the instrument of this research. Besides, the guideline of the interview and questionnaire was from [1]Cunningsworth's (1995) theory which is explained about the book evaluation. The data were analyzed through Google form percentage presentation for the questionnaire while transcription, coding was used for the interview section. The result showed, 75% of students believed that the book they used has good quality. While the rest 25% felt it did not fulfill their expectation and need. Besides, the teachers’ perception supports it with some of the books’ part lacks organization and employed too many vocabularies. Whereas the students felt their current level was not suitable with the teachers’ beliefs, but the teacher believed that it was appropriate with the students’ level. So, there were few different perceptions between them. However, the teacher believed that her role in helping students with textbook usage could help the main point of students’ need due to the teacher has lack of knowledge and awareness to do coursebook evaluation. Therefore, further research needs to be done to make this study more comprehensive.
This research work addresses a major denoising problem in Magnetic Resonance (MR) Images. Magnetic Resonance Imaging (MRI) is a powerful and e ective di- agnostic tool in basic research, clinical investigation, and disease diagnosis since it provides both chemical and physiological information about the tissue. MR Images are a ected by Rician noise during acquisition phase which decreases the image quality, image analysis and becomes di cult to diagnose it accurately. This thesis is an attempt to suppress low and high categories of Rician noise from MR data in such a manner to enhance the diagnostically relevant image content. Supervised and unsupervisedltering techniques are applied to suppress the Rician noise hence improving its quality for diagnostic process. A new supervisedltering model, based on genetic programming (GP), is proposed that evolves an optimal composite mor- phological supervisedlter (FOCMSF ) by combining the gray-scale mathematical morphological operators. (FOCMSF ) is evolved through evaluating thetness of sev- eral individuals over certain number of generations. The proposed method does not need any prior information about the noise variance. In the domain of unsupervisedltering, three techniques are proposed. These are collaborative techniques based on statistical and fuzzy logic. Fuzzy similarity based non local meanslter (FSNLM) is designed to non-locally search out similar and non-similar regions of a noisy pixel. Fuzzy weights are assigned to these regions on the base of similarity. Then the noisy pixel is replaced with the fuzzy weighted average of these regions. Another hybridlter is proposed that combines FSNLM and local order statisticallters to suppress Rician noise. This hybridlter uses the strengths of non-local and locallters and adaptively calculates the fuzzy weighted estimation of the noisy pixels. Another non local fuzzy weighted Enhanced LMMSE (Linear Minimum Mean Square Estimator) is designed. The aim of this approach is to handle adaptively the low and high levels of variation of Rician noise and to estimate a closed-form of Rician distributed signal. It estimates the noise free pixel value based on similarity of the non-local neighborhood pixels around a window of certain prede ned radius. Similarity is computed using fuzzy logic approach which is served as fuzzy weights in enhanced LMMSE module for accurate estimation of noise free pixel value. The proposed schemes handle the problem with better accuracy than several well knownltering schemes NLM, LMMSE, Wavelet based techniques etc. and therefore can be considered as original contribution of this research work. The pro- posed schemes handle the problem of Rician noise at low and high noise variances on smooth as well as detailed regions where existing methods fail due to multifar- ious nature of this noise. The improved performance of the developedlters are investigated using the standard MRI dataset and its performance is compared with previously proposed state-of-the art methods. Detailed experimentation has been performed using simulated and real datasets based on well known quantitative mea- sures. Comparative analysis demonstrates the superiority of the proposed schemes over the existing techniques.