Search or add a thesis

Advanced Search (Beta)
Home > Variability Among Ralstonia Solanacearum Isolates and Screening of Chili Germplasm for Resistance

Variability Among Ralstonia Solanacearum Isolates and Screening of Chili Germplasm for Resistance

Thesis Info

Access Option

External Link

Author

Muhammad Naveed Aslam

Program

PhD

Institute

Pir Mehr Ali Shah Arid Agriculture University

City

Rawalpindi

Province

Punjab

Country

Pakistan

Thesis Completing Year

2015

Thesis Completion Status

Completed

Subject

Plant Pathology

Language

English

Link

http://prr.hec.gov.pk/jspui/bitstream/123456789/10392/1/Muhammad_Naveed_Aslam_Plant_Pathology_2015_PMAS_12.2.2018.pdf

Added

2021-02-17 19:49:13

Modified

2024-03-24 20:25:49

ARI ID

1676727655524

Similar


Chili (Capsicum annuum) belongs to family solanaceae and is one of the most common cultivated crops of the world. Chili has been cultivated on 63.6 thousand hectares in Pakistan with a production of 147.2 thousand tons in 2012-13.Bacterial wilt caused by Ralstonia solanacearum is a highly challenging and destructive disease of solanaceous crops. R. solanacearum is a soil and water borne bacterium which enters the plant roots, multiplies through the xylem, and collapses the host. The bacterial wilt infects more than 450 plant species belonging to 54 different botanical families. Major hosts include tomato, hot pepper, sweet pepper and potato. Eighty countries are affected with a loss of $ 1 billion each year. As the information regarding distribution of bacterial wilt in different agro-ecological zones of Pakistan, pathogenic variability among different isolates, genetic diversity of the bacterium and response of different chili cultivars towards the pathogen is lacking therefore the present studies were carried out. Major chili growing areas from different agro-ecological zones were surveyed for the determination of incidence, prevalence, biovars identification, pathogenic variability and genetic diversity of different isolates of Ralstonia solanacearum. Chili germplasm comprising 28 varieties was screened for their relative resistance or susceptibility against the highly virulent strain (RsBd 6) of the bacterium in the glasshouse. The maximum incidence of 22% of bacterial wilt was recorded in district Badin while the incidence was the minimum (4.4%) in district Loralai. The disease incidence was found to be the maximum (19.5%) in Indus delta and was the minimum in Western dry mountains (5%). Maximum incidence was observed in Sindh province followed by Punjab (11.4%) and was the minimum in Baluchistan (4.9%). The xxi overall incidence in the country was 9.95%. The prevalence was found to be the maximum in Sindh (100%) followed by Punjab (84%) with an overall prevalence of 75.8% in the country. A total of 114 isolates of R. solanacearum from eight agro-ecological zones were isolated, confirmed by immunoStrips and characterized by employing different biochemical tests. The biovars were identified on the basis of sugar consumption. Of the 114 isolates, 92 were distinguished as biovar 3 while 22 were recognized as biovar 4. Both the biovar 3 and biovar 4 were diagnosed from Sindh and Punjab while only biovar 3 was distinguished from Baluchistan and Khyber Pakhtoonkhwa. The isolates varied in pathogenicity when tested on highly susceptible cv. California wonder; 21.9% isolates were found highly virulent, 29.8% virulent, 25.4% weakly virulent and 22.8% were avirulent. The isolates were then confirmed through PCR by using specific primers and running on 1% agarose gel visualized under UV light. The screening of chili germplasm against the bacterium revealed that two cultivars viz. Skyline II and Hifly were highly resistant. Sanam was the only cultivar which was identified as resistant. Five cultivars were categorized as moderately resistant. The cultivars Maxi and Talhari were found highly susceptible to the pathogen while rest of the varieties was either susceptible or moderately susceptible. It is concluded that bacterial wilt caused by R.solanacearum is prevalent throughout the country in all the agroecological zones with varying intensities warranting stringent surveillance and control measures. As variations have been observed in the virulence of R. solanacearum isolates, management strategies should be followed accordingly. Resistant and moderately resistant cultivars have been identified, therefore, recommended for cultivation.
Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

جیہڑا ویکھ کے لہراں ہار گیا

جیہڑا ویکھ کے لہراں ہار گیا
کدی اوہ ناں بیڑا پار گیا
جہیڑا حسن دا مان کریندا سی
اوہ یوسف مصر بازار گیا
جیہڑا وڑیا عشق دے میلے نوں
اوہ عقل دی بازی ہار گیا
اوہ دوہتا پاک نبیؐ دا اے
بن جنت دا سردار گیا
اوہ بندہ جانو چنگا اے
جیہڑا سوہنا وقت گزار گیا
اوہنوں ساری دنیا یاد رہی
ہک مینوں منوں وسار گیا
اوہ خالص بندہ مولا دا
جیہڑا خالص لے کردار گیا

ڈاکٹر اسرار احمد: بیسویں صدی کا عظیم مدرس و داعی قرآن

Dr. Israr Ahmed was a great thinker, intellectual and a reformer. He was diverse scholar and took inspiration from a great and diverse spectrum of sholars like Dr. Allama Iqbal and Dr. Rafiuddin; Abul Aa’la Maoudoodi and Abul Kalam Azad; Hameed uddin Farahi and Amin Ahsan Islahi and Sheikh ul Hind Maulana Mahmood ul Hasan and Shiekh ul Islam Maulana Shabbir Ahmed Usmani. His thought and wisdom was quite influenced by these people. We trace out this remarkable and renowned sholar’s rendered his educational, authorial and religious services. For this purpose Dr. Israr Ahmed started his mission with lecture of Quran. Soon, his lectures were well known throughout the country. He established a great institute namely ‘Markazi Anjuman e Khudaam ul Quran’ in Lahore in order to render educational, authorial and religious services in an organized manner. To spread reformative and preaching services in a better way, he established a party with the name of ‘Tanzeem e Islam Pakistan’In view of his great services, especially in the field of Holy Quran, we may mark him as great scholar of twentieth centur

Fabrication, Characterization and Structural Study of Ferrites of Technical Importance

Ferrites are widely used in power electronics applications where the frequency range is from KHz to MHz. No other alternative materials except ferrites are available at such high frequencies. The areas of magnetic nanoparticles and thin films lead to revolutionary new approaches in basic and advanced magnetism, and are more effective in the field of high density storage media. The main objective of the present study was to produce single phase ferrites in the form of bulk, nano and thin films with improved structural, electrical and magnetic properties. This thesis examines the issue encountered in the growth, structural, microstructural, electrical and magnetic properties of ferrites in the form of bulk, nanoparticles and thin films. Here the materials examined include Cu 0.5 Zn 0.5 Fe 2- x Al x O 4 (x=0.0 to 0.5) ferrites prepared with solid state reaction method, Co 0.5 Mn 0.5 Fe 2 O 4 (calcined at 500, 600, 700, 800, 900°C), Mn 0.5 Cu 0.5-x Zn x Fe 2 O 4 (x=0.0 to 0.5), Mn 0.5 Cu 0.5-x Ni x Fe 2 O 4 (x=0.0 to 0.5) ferrites prepared with sol-gel combustion method and Fe 3 O 4 thin films prepared with pulsed laser deposition technique. The effect of Al3+ on the structural, electrical and magnetic properties were investigated in Cu 0.5 Zn 0.5 Fe 2-x Al x O 4 (x=0.0 to 0.5) ferrites prepared with solid state reaction method. Single phase cubic spinel structure was revealed by X-ray diffraction analysis. For all the samples, crystallite size remained in the range of 25-30 nm. Lattice constants of all the samples decreased, whereas porosity increased with increasing Al+3 concentration due to the substitution of smaller Al3+ ion (0.51 Å) for large Fe3+ ion (0.64 Å). Due to non-magnetic trend of Al3+ concentrations for a magnetic element Fe3+ at the B-site gradually decreased the saturation magnetization. Al+3 has significant impact on the dielectric constant ( ε /), tangent of dielectric loss angle (tanδ) and dielectric loss factor ( ε //). The possible reason for the variation in dielectric properties has been understood on the basis of space charge polarization. Three series of ferrites Co 0.5 Mn 0.5 Fe 2 O 4 (calcined at 500, 600, 700, 800, 900°C), Mn 0.5 Cu 0.5-x Zn x Fe 2 O 4 (x=0.0 to 0.5), Mn 0.5 Cu 0.5-x Ni x Fe 2 O 4 (x=0.0 to 0.5) were prepared by sol-gel combustion method. In Co 0.5 Mn 0.5 Fe 2 O 4 ferrites, crystallite size was determined with Scherrer’s formula. Crystallite size increases with calcination temperature but coercivity decreases. The decrease in coercivity at larger crystallite size can be attributed to domain walls. Single phase nanocrystalline Mn 0.5 Cu 0.5-x Zn x Fe 2 O 4 (x=0.0 to 0.5) ferrites were successfully prepared at low temperature of 300°C using citric acid as a fuel and nitrates as oxidants by sol-gel method. X-ray diffraction (XRD) and room temperature vibrating sample magnetometer (VSM) studies have been carried out in order to understand the structural and magnetic properties as a function of zinc concentration. The variations of observed lattice parameter and crystallite size have been explained by considering the larger ionic radius of zinc. The coercivity decreases as the crystallite size increases, attaining a minimum value of 46.32 Oe. This decrease at larger crystallite size could be due to three reasons. First, the crossover of single domain to multiphase domain, second combined effect of surface and surface anisotropy, third migration of Fe+3 ions from A to B-site. Another series of single phase nano-crystalline Mn 0.5 Cu 0.5- x Zn x Fe 2 O 4 (x=0.0 to 0.5) ferrites were successfully synthesized by combustion method at a temperature as low as 300°C. The presence of Ni2+ ions did not show a consistent trend in diffraction peaks shifting to either lower or higher angles. It was observed that with increasing nickel concentration, saturation magnetization (M s ) increased but coercivity (H c ) decreased which could be attributed to the substitution of soft ferromagnetic Ni2+ ions in place of diamagnetic Cu2+ ions. The minimum value of coercivity (87.20 Oe) was observed for the composition Mn 0.5 Ni 0.5 Fe 2 O 4 . Fe 3 O 4 thin films were deposited on Si(100) substrates with pulsed laser deposition technique. First we studied the effect of annealing and deposition temperature, and second the effect of annealing time of 30, 60 and 90 minutes on the structural and magnetic properties of Fe 3 O 4 thin films. Scanning electron microscopy, X-ray diffractometery and vibrating sample magnetometry were used to find the film thickness, Fe 3 O 4 phase and magnetic properties respectively. We demonstrate optimized deposition and annealing condition for an enhanced magnetization of 854 emu/cc that is very high as compared to the bulk sample. Effect of annealing time on Fe 3 O 4 thin films were studied by X-ray diffractometer and vibrating sample magnetometer. Single phase [111] oriented Fe 3 O 4 thin films independent of substrate orientation was obtained after ninety minutes annealing. This preferred [111] oriented growth was explained on the basis of the achievement of a thermodynamic stable state.